DOI QR코드

DOI QR Code

MOCVD Growth and Characterization of Heteroepitaxial Beta-Ga2O3

MOCVD 성장법을 이용한 Beta-Ga2O3 박막의 헤테로에피택시 성장 특성

  • Jeong Soo Chung (Department of Chemical Engineering, Chonnam National University) ;
  • An-Na Cha (Energy Convergence Core-Facility, Chonnam National University) ;
  • Gieop Lee (Department of Chemical Engineering, Chonnam National University) ;
  • Sea Cho (Department of Chemical Engineering, Chonnam National University) ;
  • Young-Boo Moon (UJL Inc. Advanced Institutes of Convergence Technology) ;
  • Myungshik Gim (UJL Inc. Advanced Institutes of Convergence Technology) ;
  • Moo Sung Lee (Department of Chemical Engineering, Chonnam National University) ;
  • Jun-Seok Ha (Department of Chemical Engineering, Chonnam National University)
  • 정정수 (전남대학교 화학공학과) ;
  • 차안나 (전남대학교 에너지융복합전문핵심연구지원센터) ;
  • 이기업 (전남대학교 화학공학과) ;
  • 조세아 (전남대학교 화학공학과) ;
  • 문영부 ((주)유제이엘) ;
  • 김명식 ((주)유제이엘) ;
  • 이무성 (전남대학교 화학공학과) ;
  • 하준석 (전남대학교 화학공학과)
  • Received : 2024.06.18
  • Accepted : 2024.06.29
  • Published : 2024.06.30

Abstract

In this study, we investigated a method of growing single crystal 𝛽-Ga2O3 thin films on a c-plane sapphire substrate using MOCVD. We confirmed the optimal growth conditions to increase the crystallinity of the 𝛽-Ga2O3 thin film and confirmed the effect of the ratio between O2 and Ga precursors on crystal growth on the crystallinity of the thin film. The growth temperature range was 600~1100℃, and crystallinity was analyzed when the O2/TMGa ratio was 800~6000. As a result, the highest crystallinity thin film was obtained when the molar ratio between precursors was 2400 at 1100℃. The surface of the thin film was observed with a FE-SEM and XRD ω-scan of the thin film, the FWHM was found to be 1.17° and 1.43° at the and (${\bar{2}}01$) and (${\bar{4}}02$) diffraction peaks. The optical band gap energy obtained was 4.78 ~ 4.88 eV, and the films showed a transmittance of over 80% in the near-ultraviolet and visible light regions.

본 연구에서는 MOCVD 장비를 사용하여 c-plane sapphire 기판 위에 𝛽-Ga2O3 박막을 성장시키는 방법을 조사하였다. 우리는 𝛽-Ga2O3 박막의 결정성을 높이기 위한 최적의 성장 조건을 확인하였으며, 박막의 결정성에 있어 O2와 Ga 전구체 간의 비율이 결정 성장에 미치는 영향을 확인하였다. 성장 온도의 범위는 600~1100℃ 였으며 O2/TMGa의 비율이 800 ~ 6000일 때 결정성을 분석하였다. 결과적으로 1100℃에서 전구체 간의 몰비가 2400일 때 가장 높은 결정성의 박막을 얻을 수 있었다. 박막의 표면을 주사 전자 현미경으로 관찰하였으며, 박막의 XRD ω-스캔 시 FWHM은 (${\bar{2}}01$), (${\bar{4}}02$) 회절 피크에서 각각 1.17°, 1.43°로 나타났다. 이렇게 얻어낸 박막의 경우, 가시광선 영역에서 80% 이상의 높은 투과율을 보였으며, 박막의 밴드갭 에너지는 4.78 ~ 4.88 eV였다.

Keywords

Acknowledgement

This work was supported by the Technology Development Program (RS-2023-00271997) funded by the Ministry of SMEs and Startups (MSS, Korea). This research was supported by the Basic Science Research Capacity Enhancement Project through the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education. (grant No. 2019R1A6C1010024).

References

  1. Masataka, H., et al., "Recent progress in Ga2O3 power devices", Semicond. Sci. Technol., 31(3), 034001 (2016).
  2. X. Guan, U. B. Pal, Y. Jiang, and S. Su, "Clean Metals Production by Solid Oxide Membrane Electrolysis Process", J. Sustain. Metall., 2, 152-166 (2016).
  3. S. Fujita, "Wide-bandgap semiconductor materials: For their full bloom", Jpn. J. Appl. Phys., 54(3), 030101 (2015).
  4. J. B. Varley, B. Shen, and M. Higashiwaki, "Wide bandgap semiconductor materials and devices", J. Appl. Phys., 131(23), 230401 (2022).
  5. H. Jin, L. Qin, L. Zhang, X. Zeng, and R. Yang, "Review of wide band-gap semiconductors technology", MATEC Web Conf., 40, 01006 (2016).
  6. M. Baldini, Z. Galazka, and G. Wagner, "Recent progress in the growth of β-Ga2O3 for power electronics applications", Mater. Sci. Semicond. Process., 78, 132-146 (2018).
  7. M. Higashiwaki, "β-Ga2O3 material properties, growth technologies, and devices: a review", AAPPS Bull., 32(3), (2022).
  8. J. Bae, D.-W. Jeon, J.-H. Park, and J. Kim, "High responsivity solar-blind metal-semiconductor-metal photodetector based on α-Ga2O3", J. Vac. Sci. Technol. A, 39(3), 033410 (2021).
  9. L. K. Ping, D. D. Berhanuddin, A. K. Mondal, P. S. Menon, and M. A. Mohamed, "Properties and perspectives of ultrawide bandgap Ga2O3 in optoelectronic applications", Chinese J. Phys., 73, 195-212 (2021).
  10. P. J. Wellmann, "Power Electronic Semiconductor Materials for Automotive and Energy Saving Applications - SiC, GaN, Ga2O3, and Diamond", Zeitschrift fur Anorg. und Allg. Chemie, 643(21), 1312-1322 (2017).
  11. H. Aida, et al., "Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method", Jpn. J. Appl. Phys., 47, 8506-8509 (2008).
  12. Z. Galazka, "Growth of bulk β-Ga2O3 single crystals by the Czochralski method", J. Appl. Phys. 131(3), 031103 (2022).
  13. T. Harwig, et al., "Electrical Properties of β-Ga2O3 Single Crystals", Solid State Communications, 18, 1223-1225 (1976).
  14. S. Ghose, et al., "Structural and optical properties of β-Ga2O3 thin films grown by plasma-assisted molecular beam epitaxy", J. Vac. Sci. Technol. B, 34(2), 02L109 (2016).
  15. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, "MBE grown Ga2O3 and its power device applications", J. Cryst. Growth, 378, 591-595 (2013).
  16. H. Murakami, et al., "Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy", Appl. Phys. Express, 8(1), 015503 (2015).
  17. H. Nishinaka, T. Nagaoka, Y. Kajita, and M. Yoshimoto, "Rapid homoepitaxial growth of (010) β-Ga2O3 thin films via mist chemical vapor deposition", Mater. Sci. Semicond. Process., 128, 105732 (2021).
  18. Z. Feng, A. F. M. A. U. Bhuiyan, M. R. Karim, and H. Zhao, "MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties", Appl. Phys. Lett., 114(25), 250601 (2019).
  19. F. Alema, et al., "Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD", J. Cryst. Growth, 475, 77-82 (2017).
  20. L. Meng, Z. Feng, A. F. M. A. U. Bhuiyan, and H. Zhao, "High-Mobility MOCVD β-Ga2O3 Epitaxy with Fast Growth Rate Using Trimethylgallium", Cryst. Growth Des., 22(6), 3896-3904 (2022).
  21. T. Oshima, T. Okuno, and S. Fujita, "Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors", Japanese J. Appl. Physics, 46(11R), 7217-7220 (2007).
  22. S. J. Hao, et al., "Growth and characterization of β-Ga2O3 thin films on different substrates", J. Appl. Phys., 125(10), 105701 (2019).
  23. G. Joshi, Y. S. Chauhan, and A. Verma, "Temperature dependence of β-Ga2O3 heteroepitaxy on c-plane sapphire using low pressure chemical vapor deposition", J. Alloys Compd., 883, 160799 (2021).
  24. C. N. Cochran, and L. M. Foster, "Vapor Pressure of Gallium, Stability of Gallium Suboxide Vapor, and Equilibria of Some Reactions Producing Gallium Suboxide Vapor", J. Electrochem. Soc., 109(2), 144 (1962).
  25. T.-S. Chou, et al., "Influencing the morphological stability of MOVPE-grown β-Ga2O3 films by O2/Ga ratio", Appl. Surf. Sci., 660, 159966 (2024).
  26. P. R. Jubu, F. K. Yam, V. M. Igba, and K. P. Beh, "Tauc-plot scale and extrapolation effect on bandgap estimation from UV-vis-NIR data - A case study of β-Ga2O3", J. Solid State Chem., 290, 121576 (2020).