DOI QR코드

DOI QR Code

Preparation of Gallium Nitride Powders and Nanowires from a Gallium(III) Nitrate Salt in Flowing Ammonia

  • Jung, Woo-Sik (School of Chemical Engineering and Technology, College of Engineering, Yeungnam University)
  • Published : 2004.01.20

Abstract

Gallium nitride (GaN) powders were prepared by calcining a gallium(III) nitrate salt in flowing ammonia in the temperature ranging from 500 to 1050 $^{\circ}C$. The process of conversion of the salt to GaN was monitored by X-ray diffraction and $^{71}Ga$ MAS (magic-angle spinning) NMR spectroscopy. The salt decomposed to ${\gamma}-Ga_2O_3$ and then converted to GaN without ${\gamma}-{\beta}Ga_2O_3$ phase transition. It is most likely that the conversion of ${\gamma}-Ga_2O_3$ to GaN does not proceed through $Ga_2O$ but stepwise via amorphous gallium oxynitride ($GaO_xN_y$) as intermediates. The GaN nanowires and microcrystals were obtained by calcining the pellet containing a mixture of ${\gamma}-Ga_2O_3$ and carbon in flowing ammonia at 900 $^{\circ}C$ for 15 h. The growth of the nanowire might be explained by the vapor-solid (VS) mechanism in a confined reactor. Room-temperature photoluminescence spectra of as-synthesized GaN powders obtained showed the emission peak at 363 nm.

Keywords

References

  1. Ambacher, O. J. Phys. D: Appl. Phys. 1998, 31, 2653. https://doi.org/10.1088/0022-3727/31/20/001
  2. Sakai, S.; Kurai, S.; Abe, T.; Naoi, Y. Jpn. J. Appl. Phys. 1996, 35,L77. https://doi.org/10.1143/JJAP.35.L77
  3. Porowski, S. J. Crystal Growth 1996, 166, 583. https://doi.org/10.1016/0022-0248(96)00116-9
  4. Balkas, C. M.; Davis, R. F. J. Am. Ceram. Soc. 1996, 79, 2309. https://doi.org/10.1111/j.1151-2916.1996.tb08977.x
  5. Joint Committee on Powder Diffraction Standards (JCPDS) CardNo. 20-0426.
  6. Yang, Y.; Tran, C.; Leppert, V.; Risbud, S. H. Mater. Lett. 2000,43, 240. https://doi.org/10.1016/S0167-577X(99)00266-9
  7. Jung, W.-S.; Park, C.; Han, S. Bull. Korean Chem. Soc. 2003, 24,1011. https://doi.org/10.5012/bkcs.2003.24.7.1011
  8. Smith, M. E. Appl. Magn. Reson. 1993, 4, 1. https://doi.org/10.1007/BF03162555
  9. Han, O. H.; Timken, H. K. C.; Oldfield, E. J. Chem. Phys. 1988,89, 6046. https://doi.org/10.1063/1.455418
  10. Wood, G. L.; Pruss, E. A.; Paine, R. T. Chem. Mater. 2001, 13, 12. https://doi.org/10.1021/cm0006906
  11. Jung, W.-S. Mater. Lett. 2002, 57, 110. https://doi.org/10.1016/S0167-577X(02)00713-9
  12. Wolter, S. D.; Luther, B. P.; Waltemyer, D. L.; Onneby, C.;Mohney, S. E.; Molnar, R. J. Appl. Phys. Lett. 1997, 70, 2156. https://doi.org/10.1063/1.118944
  13. Peng, H. Y.; Zhou, X. T.; Wang, N.; Zheng, Y. F.; Liao, L. S.; Shi,W. S.; Lee, C. S.; Lee, S. T. Chem. Phys. Lett. 2000, 327, 263. https://doi.org/10.1016/S0009-2614(00)00872-1
  14. Jung, W.-S.; Chung, Y. K.; Shin, D. M.; Kim, S.-D. Bull. Chem.Soc. Jpn. 2002, 75, 1263. https://doi.org/10.1246/bcsj.75.1263
  15. Han, W.; Fan, S.; Li, Q.; Hu, Y. Science 1997, 277, 1287. https://doi.org/10.1126/science.277.5330.1287
  16. Cheng, G. S.; Zhang, L. D.; Zhu, Y.; Fei, G. T.; Li, L.; Mo, C. M.;Mao, Y. Q. Appl. Phys. Lett. 1999, 75, 2455. https://doi.org/10.1063/1.125046
  17. Campbell, W. B. In Whisker Technology; Levitt, A. P., Ed.; Wiley-Interscience: New York, U. S. A., 1970; Chap. 2.
  18. Ogino, T.; Aoki, M. Jpn. J. Appl. Phys. 1980, 19, 2395. https://doi.org/10.1143/JJAP.19.2395

Cited by

  1. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine vol.6, pp.12, 2016, https://doi.org/10.3390/nano6030038
  2. Scallion-Root-Shaped GaN Nanorods Grown by Two-Step Method and Study on their Properties vol.652-654, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.652-654.197
  3. N Nanoparticles with Tunable Indium Content: Synthesis and Characterization vol.21, pp.52, 2015, https://doi.org/10.1002/chem.201502875
  4. Ga (Nano-Galfenol) vol.6, pp.5, 2018, https://doi.org/10.1039/C7TC04618A
  5. Defect-pit-assisted growth of GaN nanostructures: nanowires, nanorods and nanobelts pp.32, 2008, https://doi.org/10.1039/b804943b
  6. A Study of Oxygen Content in GaN, AlN, and GaAlN Powders vol.155, pp.6, 2008, https://doi.org/10.1149/1.2898869
  7. Synthesis and Characterization of Highly Crystalline Anatase Nanowire Arrays vol.25, pp.9, 2004, https://doi.org/10.5012/bkcs.2004.25.9.1341
  8. Synthesis and Characterization of Gallium Nitride Powders and Nanowires Using Ga(S2CNR2)3(R = CH3, C2H5) Complexes as New Precursors vol.26, pp.1, 2004, https://doi.org/10.5012/bkcs.2005.26.1.131
  9. Growth of Nano- and Microstructured Indium Nitride Crystals by the Reaction of Indium Oxide with Ammonia vol.26, pp.9, 2004, https://doi.org/10.5012/bkcs.2005.26.9.1354
  10. Advances in Gallium Oxonitride Ceramics: A New Class of Materials in the System Ga-O-N vol.7, pp.10, 2005, https://doi.org/10.1002/adem.200500127
  11. Growth of One-dimensional Gallium Nitride Nano- and Microstructures in an Alumina Matrix Containing Gallium Oxide vol.27, pp.8, 2004, https://doi.org/10.5012/bkcs.2006.27.8.1235
  12. Growth of β-gallium oxide nanostructures by the thermal annealing of compacted gallium nitride powder vol.36, pp.2, 2004, https://doi.org/10.1016/j.physe.2006.12.001
  13. Synthesis and optical properties of single-crystalline GaN nanorods vol.82, pp.5, 2008, https://doi.org/10.1016/j.vacuum.2007.09.005
  14. On the ammonolysis of Ga2O3: An XRD, neutron diffraction and XAS investigation of the oxygen-rich part of the system Ga2O3GaN vol.183, pp.3, 2010, https://doi.org/10.1016/j.jssc.2009.12.024
  15. Structural and magnetic properties of Fe2CoGa Heusler nanoparticles vol.45, pp.29, 2004, https://doi.org/10.1088/0022-3727/45/29/295001
  16. Resolving the phase structure of nonstoichiometric Co2FeGa Heusler nanoparticles vol.112, pp.12, 2012, https://doi.org/10.1063/1.4770477
  17. Photocatalytic hydrogen evolution using nanocrystalline gallium oxynitride spinel vol.2, pp.45, 2014, https://doi.org/10.1039/c4ta03676j
  18. Effect of manganese doping on optical and magnetic properties of titanium dioxide nanostructures prepared by hydrothermal technique in the presence of thiourea vol.9, pp.12, 2014, https://doi.org/10.1049/mnl.2014.0120
  19. Nanostructured gallium nitride powder functionalized with a fluorophore terminated peptide vol.2, pp.9, 2015, https://doi.org/10.1088/2053-1591/2/9/095018
  20. Chemical Synthesis and Characterization of γ-Co2NiGa Nanoparticles with a Very High Curie Temperature vol.27, pp.20, 2004, https://doi.org/10.1021/acs.chemmater.5b02227
  21. Debye function analysis of nanocrystalline gallium oxide γ-Ga2O3 vol.231, pp.5, 2004, https://doi.org/10.1515/zkri-2015-1895