• Title/Summary/Keyword: $\Gamma$-convex

Search Result 45, Processing Time 0.022 seconds

ON CLOSED CONVEX HULLS AND THEIR EXTREME POINTS

  • Lee, S.K.;Khairnar, S.M.
    • Korean Journal of Mathematics
    • /
    • v.12 no.2
    • /
    • pp.107-115
    • /
    • 2004
  • In this paper, the new subclass denoted by $S_p({\alpha},{\beta},{\xi},{\gamma})$ of $p$-valent holomorphic functions has been introduced and investigate the several properties of the class $S_p({\alpha},{\beta},{\xi},{\gamma})$. In particular we have obtained integral representation for mappings in the class $S_p({\alpha},{\beta},{\xi},{\gamma})$) and determined closed convex hulls and their extreme points of the class $S_p({\alpha},{\beta},{\xi},{\gamma})$.

  • PDF

SOME MAJORIZATION PROBLEMS ASSOCIATED WITH p-VALENTLY STARLIKE AND CONVEX FUNCTIONS OF COMPLEX ORDER

  • Altintas, Osman;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.175-183
    • /
    • 2001
  • The main object of this paper is to investigate several majorization problems involving two subclasses $S_{p,q}(\gamma)$ and $C_{p,q}(\gamma)$ of p-valently starlike and p-valently convex functions of complex order ${\gamma}{\neq}0$ in the open unit disk $\mathbb{u}$. Relevant connections of the results presented here with those given by earlier workers on the subject are also indicated.

  • PDF

HYPERBOLIC CURVATURE AND K-CONVEX FUNCTIONS

  • Song Tai-Sung
    • The Pure and Applied Mathematics
    • /
    • v.13 no.2 s.32
    • /
    • pp.151-155
    • /
    • 2006
  • Let $\gamma$ be a $C_2$ curve in the open unit disk $\mathbb{D}. Flinn and Osgood proved that $K_{\mathbb{D}}(z,\gamma){\geq}1$ for all $z{\in}{\gamma}$ if and only if the curve ${\Large f}o{\gamma}$ is convex for every convex conformal mapping $\Large f$ of $\mathbb{D}, where $K_{\mathbb{D}}(z,\;\gamma)$ denotes the hyperbolic curvature of $\gamma$ at the point z. In this paper we establish a generalization of the Flinn-Osgood characterization for a curve with the hyperbolic curvature at least 1.

  • PDF

WEAK AND STRONG CONVERGENCE TO COMMON FIXED POINTS OF NON-SELF NONEXPANSIVE MAPPINGS

  • Su, Yongfu;Qin, Xiaolong
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.437-448
    • /
    • 2007
  • Suppose K is a nonempty closed convex nonexpansive retract of a real uniformly convex Banach space E with P as a nonexpansive retraction. Let $T_1,\;T_2\;and\;T_3\;:\;K{\rightarrow}E$ be nonexpansive mappings with nonempty common fixed points set. Let $\{\alpha_n\},\;\{\beta_n\},\;\{\gamma_n\},\;\{\alpha'_n\},\;\{\beta'_n\},\;\{\gamma'_n\},\;\{\alpha'_n\},\;\{\beta'_n\}\;and\;\{\gamma'_n\}$ be real sequences in [0, 1] such that ${\alpha}_n+{\beta}_n+{\gamma}_n={\alpha}'_n+{\beta'_n+\gamma}'_n={\alpha}'_n+{\beta}'_n+{\gamma}'_n=1$, starting from arbitrary $x_1{\in}K$, define the sequence $\{x_n\}$ by $$\{zn=P({\alpha}'_nT_1x_n+{\beta}'_nx_n+{\gamma}'_nw_n)\;yn=P({\alpha}'_nT_2z_n+{\beta}'_nx_n+{\gamma}'_nv_n)\;x_{n+1}=P({\alpha}_nT_3y_n+{\beta}_nx_n+{\gamma}_nu_n)$$ with the restrictions $\sum^\infty_{n=1}{\gamma}_n<\infty,\;\sum^\infty_{n=1}{\gamma}'_n<\infty,\; \sum^\infty_{n=1}{\gamma}'_n<\infty$. (i) If the dual $E^*$ of E has the Kadec-Klee property, then weak convergence of a $\{x_n\}$ to some $x^*{\in}F(T_1){\cap}{F}(T_2){\cap}(T_3)$ is proved; (ii) If $T_1,\;T_2\;and\;T_3$ satisfy condition(A'), then strong convergence of $\{x_n\}$ to some $x^*{\in}F(T_1){\cap}{F}(T_2){\cap}(T_3)$ is obtained.

Nonlinear semigroups on locally convex spaces

  • Hyeon, Son-Kuk
    • East Asian mathematical journal
    • /
    • v.6 no.1
    • /
    • pp.111-121
    • /
    • 1990
  • Let E be a locally convex Hausdorff space and let $\Gamma$ be a calibration for E. In this note we proved that if E is sequentially complete and a multi-vaiued operaturA in E is $\Gamma$-accretive such that $D(A){\subset}Re$ (I+$\lambda$A) for all sufficiently small positive $\lambda$, then A generates a nonlinear $\Gamma$-contraction semiproup {T(t) ; t>0}. We also proved that if E is complete, $Gamma$ is a dually uniformly convex calibration, and an operator A is m-$\Gamma$-accretive, then the initial value problem $$\{{\frac{d}{dt}u(t)+Au(t)\;\ni\;0,\;t >0,\atop u(0)=x}\.$$ has a solution $u:[0,\infty){\rightarrow}E$ given by $u(t)=T(t)x={lim}\limit_{n\rightarrow\infty}(I+\frac{t}{n}A)^{-n}x$ each $x{\varepsilon}D(A)$.

  • PDF

GENERALIZATIONS OF THE NASH EQUILIBRIUM THEOREM ON GENERALIZED CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.697-709
    • /
    • 2001
  • Generalized forms of the von neumann-Sion type minimax theorem, the Fan-Ma intersection theorem, the Fan-a type analytic alternative, and the Nash-Ma equilibrium theorem hold for generalized convex spaces without having any linear structure.

  • PDF

FIXED POINTS OF BETTER ADMISSIBLE MAPS ON GENERALIZED CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.885-899
    • /
    • 2000
  • We obtain generalized versions of the Fan-Browder fixed point theorem for G-convex spaces. We define the class B of better admissible multimaps on G-convex spaces and show that any closed compact map in b fro ma locally G-convex uniform space into itself has a fixed point.

  • PDF

A NEW LOWER BOUND FOR THE VOLUME PRODUCT OF A CONVEX BODY WITH CONSTANT WIDTH AND POLAR DUAL OF ITS p-CENTROID BODY

  • Chai, Y.D.;Lee, Young-Soo
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.403-408
    • /
    • 2012
  • In this paper, we prove that if K is a convex body in $E^n$ and $E_i$ and $E_o$ are inscribed ellipsoid and circumscribed ellipsoid of K respectively with ${\alpha}E_i=E_o$, then $\[({\alpha})^{\frac{n}{p}+1}\]^n{\omega}^2_n{\geq}V(K)V({\Gamma}^{\ast}_pK){\geq}\[(\frac{1}{\alpha})^{\frac{n}{p}+1}\]^n{\omega}^2_n$. Lutwak and Zhang[6] proved that if K is a convex body, ${\omega}^2_n=V(K)V({\Gamma}_pK)$ if and only if K is an ellipsoid. Our inequality provides very elementary proof for their result and this in turn gives a lower bound of the volume product for the sets of constant width.