DOI QR코드

DOI QR Code

THE GEOMETRIC CONVEXITY OF A FUNCTION INVOLVING GAMMA FUNCTION WITH APPLICATIONS

  • Received : 2007.11.06
  • Published : 2010.07.31

Abstract

In this paper, we prove that $(\Gamma(x))^{\frac{1}{x-1}}$ is geometrically convex on (0, $\infty$). As its applications, we obtain some new estimates for $\frac{[\Gamma(x+1)]^{\frac{1}{x}}} {[\Gamma(y+1)]^{\frac{1}{y}}}$.

Keywords

References

  1. H. Alzer, Some gamma function inequalities, Math. Comp. 60 (1993), no. 201, 337–346. https://doi.org/10.1090/S0025-5718-1993-1149288-7
  2. H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), no. 217, 373–389. https://doi.org/10.1090/S0025-5718-97-00807-7
  3. H. Alzer, Inequalities for the volume of the unit ball in \$R^n$, J. Math. Anal. Appl. 252 (2000), no. 1, 353–363. https://doi.org/10.1006/jmaa.2000.7065
  4. H. Alzer, On an inequality of H. Minc and L. Sathre, J. Math. Anal. Appl. 179 (1993), no. 2, 396–402. https://doi.org/10.1006/jmaa.1993.1358
  5. G. D. Anderson and S. L. Qiu, A monotoneity property of the gamma function, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3355–3362. https://doi.org/10.1090/S0002-9939-97-04152-X
  6. A. Elbert and A. Laforgia, On some properties of the gamma function, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2667–2673. https://doi.org/10.1090/S0002-9939-00-05520-9
  7. G. M. Fichtenholz, Differential- und Integralrechnung. II, VEB Deutscher Verlag der Wissenschaften, Berlin, 1986.
  8. C. E. Finol and M. Wojtowicz, Multiplicative properties of real functions with applications to classical functions, Aequationes Math. 59 (2000), no. 1-2, 134–149. https://doi.org/10.1007/PL00000120
  9. D. Kershaw, Some extensions of W. Gautschi’s inequalities for the gamma function, Math. Comp. 41 (1983), no. 164, 607–611.
  10. J. Matkowski, $L^p-like$ paranorms, Selected topics in functional equations and iteration theory (Graz, 1991), 103–138, Grazer Math. Ber., 316, Karl-Franzens-Univ. Graz, Graz, 1992.
  11. M. Merkle, Logarithmic convexity and inequalities for the gamma function, J. Math. Anal. Appl. 203 (1996), no. 2, 369–380. https://doi.org/10.1006/jmaa.1996.0385
  12. H. Minc and L. Sathre, Some inequalities involving $(r!)^{1/r}$, Proc. Edinburgh Math. Soc. (2) 14 (1964/1965), 41–46. https://doi.org/10.1017/S0013091500011214
  13. P. Montel, Sur les functions convexes et les fonctions sousharmoniques, J. Math. Pures Appl. (9) 7 (1928), 29–60.
  14. C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2000), no. 2, 155–167.
  15. C. P. Niculescu, Convexity according to means, Math. Inequal. Appl. 6 (2003), no. 4, 571–579.
  16. B. Palumbo, A generalization of some inequalities for the gamma function, J. Comput. Appl. Math. 88 (1998), no. 2, 255–268. https://doi.org/10.1016/S0377-0427(97)00187-8
  17. J. Pecaric, G. Allasia, and C. Giordano, Convexity and the gamma function, Indian J. Math. 41 (1999), no. 1, 79–93.
  18. F. Qi and C. P. Chen, A complete monotonicity property of the gamma function, J. Math. Anal. Appl. 296 (2004), no. 2, 603–607. https://doi.org/10.1016/j.jmaa.2004.04.026
  19. F. Qi and C. P. Chen, Monotonicity and convexity results for functions involving the gamma function, Int. J. Appl. Math. Sci. 1 (2004), 27–36.
  20. F. Qi, B. N. Guo, and C. P. Chen, The best bounds in Gautschi-Kershaw inequalities, Math. Inequal. Appl. 9 (2006), no. 3, 427–436.
  21. E. T. Whittaker and G. N.Watson, A Course of Modern Analysis, Cambridge University Press, New York, 1962.

Cited by

  1. Necessary and sufficient conditions for a class of functions and their reciprocals to be logarithmically completely monotonic vol.2011, pp.1, 2011, https://doi.org/10.1186/1029-242X-2011-36
  2. Logarithmically Complete Monotonicity Properties Relating to the Gamma Function vol.2011, 2011, https://doi.org/10.1155/2011/896483
  3. A Class of Logarithmically Completely Monotonic Functions Associated with a Gamma Function vol.2010, pp.1, 2010, https://doi.org/10.1155/2010/392431