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THE GEOMETRIC CONVEXITY OF A FUNCTION
INVOLVING GAMMA FUNCTION WITH APPLICATIONS

Yuming Chu, Xiaoming Zhang, and Zhihua Zhang

Abstract. In this paper, we prove that (Γ(x))
1

x−1 is geometrically con-
vex on (0,∞). As its applications, we obtain some new estimates for

[Γ(x+1)]
1
x

[Γ(y+1)]
1
y

.

1. Introduction

For real and positive values of x the Euler gamma function Γ and its loga-
rithmic derivative ψ, the so-called digamma function, are defined by

(1.1) Γ(x) =
∫ ∞

0

e−ttx−1dt and ψ(x) =
Γ′(x)
Γ(x)

.

For extension of these functions to complex variable and for basic properties
see [21].

Over the past half century many authors have obtained inequalities for these
important functions (see [1-3, 5, 6, 9, 11, 16-18, 20] and bibliographies in those
papers). In keeping with tradition, we research the geometric convexity of the

gamma function, as its applications, we give some new estimates for [Γ(x+1)]
1
x

[Γ(y+1)]
1
y

.

The main purpose of this paper is to prove the following Theorem 1.

Theorem 1. (Γ(x))
1

x−1 is geometrically convex on (1,∞).

As applications of Theorem 1, we shall establish the following new inequal-
ities for gamma function which improve the known results.
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Theorem 2. If x > y > 0, then

(1.2)

(
x+ 1
y + 1

) (y+1)(1−log y+yψ(y)−log Γ(y))
y2

≤ [Γ(x+ 1)]
1
x

[Γ(y + 1)]
1
y

≤
(
x+ 1
y + 1

) (x+1)(1−log x+xψ(x)−log Γ(x))
x2

.

Theorem 3. Let a = 1
2 log(2π)− 1

2 = 0.4189385 · · · . If x > y > 0, then

(1.3)

(
x+ 1
y + 1

) (y+1)(y− 1
2 log y− 1

6y−a)
y2

<
[Γ(x+ 1)]

1
x

[Γ(y + 1)]
1
y

<

(
x+ 1
y + 1

) (x+1)(x− 1
2 log x− 1

6x+ 1
90x3

−a)
x2

.

Theorem 4. Let b = 2 log(2π)− 10
3 = 0.342420 · · · and c = 15 log(2π)− 76

3 =
2.234822 · · · . If x > y ≥ 1, then

(1.4)

(
x+ 1
y + 1

)1−2π2e−
13
3

≤
(
x+ 1
y + 1

)1− log y+b
2y

<
[Γ(x+ 1)]

1
x

[Γ(y + 1)]
1
y

<

(
x+ 1
y + 1

)1− 2 log x+c
15x

.

Theorem 5. Let b=2log(2π)−10
3 =0.342420· · ·, c=15log(2π)−76

3 =2.234822· · ·,
d=3− log(2π)=1.162122 · · · , and g(x)=max{ log x−d

2x , 2 log (x+1)+c
15(x+1) }. If x ≥ 1,

then

(1.5)

(
x+ 2
x+ 1

)1−2π2e−
13
3

≤
(
x+ 2
x+ 1

)1− log x+b
2x

<
[Γ(x+ 2)]

1
x+1

[Γ(x+ 1)]
1
x

<

(
x+ 2
x+ 1

)1−g(x)
.

In particular, if n ≥ 1, n ∈ N, then

(1.6)

(
n+ 2
n+ 1

) 22−3 log 2−6 log(2π)
12

≤
(
n+ 2
n+ 1

)1− logn+b
2n

≤ [(n+ 1)!]
1

n+1

(n!)
1
n

<

(
n+ 2
n+ 1

)1−g(n)

.

Theorem 6. If x ≥ 1, then

(1.7) [Γ(x+ 2)]
1
x+1

[Γ(x+ 1)]
1
x

<

(
x+ 2
x+ 1

) 4x+3
4(x+1)

.
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In particular, if n ≥ 1, n ∈ N, then

(1.8) [(n+ 1)!]
1

n+1

(n!)
1
n

<

(
n+ 2
n+ 1

) 4n+3
4(n+1)

.

2. Preliminary knowledge on geometrically convex function

Let I ⊂ (0,∞) be an interval, f : I → (0,∞) is a continuous real-valued
function. f is called geometrically convex (or concave, respectively) on I if one
of the following is true:

(2.1) f(
√
x1x2) ≤ (or ≥, respectively)

√
f(x1)f(x2)

for all x1, x2 ∈ I;

(2.2) f(Πn
i=1x

λi
i ) ≤ (or ≥, respectively)

n∏

i=1

f(xi)λi

for all x1, x2, . . . , xn ∈ I and λ1, λ2, . . . , λn ≥ 0 with
∑n
i=1 λi = 1.

The notion of geometric convexity (or concavity, respectively) was first in-
troduced by P. Montel [13]. Later, the geometric convexity (or concavity, re-
spectively) theory was developed by many authors, such as J. Matkowski [10],
C. E. Finol and M. Wójtowicz [8], and C. P. Niculescu [14, 15]. The following
Theorem A and Theorem B were established by C. P. Niculescu [14].

Theorem A. Let I ⊂ (0,∞) be an interval. If f : I → (0,∞) is a differentiable
real-valued function, then f is geometrically convex (or concave, respectively)
on I if and only if g(x) = xf ′(x)

f(x) is increasing (or decreasing, respectively) on I.

Theorem B. Let I ⊂ (0,∞) be an interval. If f : I → (0,∞) is a differentiable
real-valued function, then f is geometrically convex (or concave, respectively)

on I if and only if f(x)
f(y) ≥ (or ≤, respectively)(xy )

yf′(y)
f(y) for all x, y ∈ I.

It is easy to see that Theorem B is equivalent to the following Theorem C.

Theorem C. Let I ⊂ (0,∞) be an interval. If f : I → (0,∞) is a differentiable
real-valued function, then f is geometrically convex (or concave, respectively) on

I if and only if (xy )
yf′(y)
f(y) ≤(or ≥, respectively) f(x)f(y) ≤(or ≥, respectively)(xy )

xf′(x)
f(x)

for all x, y ∈ I.
3. Lemmas

In order to prove the main results of this paper, we need to establish and
introduce some lemmas in this section.

Lemma 1. If x ≥ 1, then

(3.1) 3
2
x4 − 11

6
x3 +

2
3
x2 − x

30
− 2

15
> 0.
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Proof. Let f(x) = 3
2x

4 − 11
6 x

3 + 2
3x

2 − x
30 − 2

15 . Then

(3.2)
f ′(x) = 6x3 − 11

2
x2 +

4
3
x− 1

30
,

f ′′(x) = 18x2 − 11x+
4
3
, x ≥ 1.

Equation (3.2) implies

(3.3) f ′(x) ≥ f ′(1) =
9
5
> 0, x ≥ 1.

Inequality (3.3) leads to

f(x) ≥ f(1) =
1
6
> 0.

¤
Lemma 2 (see [6]). If x > 0, then

(3.4) ψ′(x) >
1
x

+
1

2x2
.

Lemma 3 (see [7]). If x > 0, then

(3.5) log Γ(x) =
1
2

log(2π) + (x− 1
2
) log x− x+

1
12x

− θ1
360x3

,

(3.6) ψ(x) = log x− 1
2x

− 1
12x2

+
θ2

120x4
,

(3.7) ψ′(x) =
1
x

+
1

2x2
+

1
6x3

− 1
30x5

+
θ3

42x7
,

(3.8) ψ′′(x) = − 1
x2
− 1
x3
− 1

2x4
+

θ4
6x6

,

where 0 < θ1, θ2, θ3, θ4 < 1.

Lemma 4. If x ≥ 1, then

(3.9) (x+ 2)ψ′(x) + x(x+ 1)ψ′′(x) > 0.

Proof. Case 1: x ≥ 2. From (3.4) and (3.8) we clearly see that

(3.10)

(x+ 2)ψ′(x) + x(x+ 1)ψ′′(x)

> (x+ 2)(
1
x

+
1

2x2
) + x(x+ 1)(− 1

x2
− 1
x3
− 1

2x4
)

=
1
2x

(1− 1
x
− 1
x2

) > 0.

Case 2: 1 ≤ x < 2. Case 1 implies

(3.11) (x+ 3)ψ′(x+ 1) + (x+ 1)(x+ 2)ψ′′(x+ 1) > 0.

From the identity Γ(x+ 1) = xΓ(x) we clearly see that

(3.12) ψ′(x+ 1) = − 1
x2

+ ψ′(x), ψ′′(x+ 1) =
2
x3

+ ψ′′(x).
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Combining (3.11) and (3.12) we have

(x+ 3)(− 1
x2

+ ψ′(x)) + (x+ 1)(x+ 2)(
2
x3

+ ψ′′(x)) > 0,

which is equivalent to

(3.13) (x+ 2)ψ′(x) + x(x+ 1)ψ′′(x) >
x+ 4
x+ 2

ψ′(x)− x2 + 3x+ 4
x2(x+ 2)

.

From (3.7) and (3.13) we get

(3.14)

(x+ 2)ψ′(x) + x(x+ 1)ψ′′(x)

>
x+ 4
x+ 2

(
1
x

+
1

2x2
+

1
6x3

− 1
30x5

)
− x2 + 3x+ 4

x2(x+ 2)

=
1

x5(x+ 2)

(
3
2
x4 − 11

6
x3 +

2
3
x2 − 1

30
x− 2

15

)
.

Hence inequality (19) follows from inequalities (3.1) and (3.14). ¤

4. Proof of theorems

Proof of Theorem 1. For x ∈ (1,∞), let f(x) = [Γ(x)]
1

x−1 , then

(4.1)
xf ′(x)
f(x)

=
x(x− 1)ψ(x)− x log Γ(x)

(x− 1)2

and

(4.2)
[
xf ′(x)
f(x)

]′ =
x(x− 1)2ψ′(x) + (1− x2)ψ(x) + (x+ 1) log Γ(x)

(x− 1)3

=
(x+ 1)g(x)

(x− 1)3
,

where g(x) = x(x−1)2+ψ′(x)
x+1 + (1 − x)ψ(x) + log Γ(x). Differentiating g(x) and

making use of Lemma 4 we get

(4.3) g′(x) =
(x− 1)2

(x+ 1)2
[(x+ 2)ψ′(x) + x(x+ 1)ψ′′(x)] > 0.

Inequality (4.3) implies

(4.4) g(x) ≥ lim
x→1+0

g(x) = 0, x ∈ (1,+∞).

Therefore, Theorem 1 follows from (4.2) and (4.4) together with Theorem
A. ¤

Proof of Theorem 2. Let f(x) = [Γ(x)]
1

x−1 , x ∈ (1,∞). For any x > y > 0,
Theorem 1 and Theorem C imply

(4.5)
(
x+ 1
y + 1

) (y+1)f′(y+1)
f(y+1)

≤ [Γ(x+ 1)]
1
x

[Γ(y + 1)]
1
y

≤
(
x+ 1
y + 1

) (x+1)f′(x+1)
f(x+1)

.
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Therefore, Theorem 2 follows from the identity Γ(t+1) = tΓ(t) and inequal-
ity (4.5). ¤

Proof of Theorem 3. For x > y > 0, equations (3.5) and (3.6) imply

(4.6)





1
2 log(2π) + (x− 1

2 ) log x− x+ 1
12x − 1

360x3 < log Γ(x)
< 1

2 log(2π) + (x− 1
2 ) log x− x+ 1

12x ,
log x− 1

2x − 1
12x2 < ψ(x) < log x− 1

2x − 1
12x2 + 1

120x4

and

(4.7)





1
2 log(2π) + (y − 1

2 ) log y − y + 1
12y − 1

360y3 < log Γ(y)
< 1

2 log(2π) + (y − 1
2 ) log y − y + 1

12y ,

log y − 1
2y − 1

12y2 < ψ(y) < log y − 1
2y − 1

12y2 + 1
120y4 .

Therefore, Theorem 3 follows from inequalities (4.6)-(4.7) and Theorem 2. ¤

Proof of Theorem 4. Let a = 1
2 log(2π)− 1

2 and f(y) = ( b2 − a+1)y− 1
2 log y−

1
6y − a− 1

6 , y ≥ 1. Then f(1) = 0 and

(4.8)

f ′(y) =
1

6y2
[(3 log(2π)− 1)y2 − 3y + 1]

≥ 1
6y2

[(3 log(2π)− 1)y − 3y + 1]

≥ 1
2y2

[log(2π)− 1] > 0.

Inequality (4.8) implies

f(y) =
(
b

2
− a+ 1

)
y − 1

2
log y − 1

6y
− a− 1

6
≥ f(1) = 0, y ≥ 1,

(4.9) 1− log y + b

2y
≤

(y + 1)(y − 1
2 log y − 1

6y − a)

y2
.

Taking h(y) = 1− log y+b
2y , y ≥ 1, it is easy to see

(4.10) min
y∈[1,+∞]

h(y) = h(e1−b) = 1− 2π2e−
13
3 .

Next let

g(x) = (90a− 6c− 90)x+ (33x+ 45) log x+
15
x
− 1
x2
− 1
x3

+ 90a+ 15, x ≥ 1.

Then

(4.11)





g′(x) = (90a− 6c− 90) + 33 log x+ 33x+45
x − 15

x2 + 2
x3 + 3

x4 ,
g′′(x) = 3

x5 (x− 1)(11x3 − 4x2 + 6x+ 4) ≥ 0,
g′(1) = 85− 45 log(2π) = 2.295532 · · · > 0,
g(1) = 0.
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From (4.11) we clearly see that g(x) ≥ 0 for x ≥ 1, then we get

(4.12) (x+ 1)(x− 1
2 log x− 1

6x + 1
90x3 − a)

x2
≤ 1− 2 log x+ c

15x
.

Therefore, Theorem 4 follows from (4.9)-(4.10) and (4.12) together with The-
orem 3. ¤

Remark 1. For any n ≥ 1, n ∈ N, H. Minc and L. Sathre [12] first established
the following inequality:

(4.13) 1 ≤ [(n+ 1)!]
1

n+1

(n!)
1
n

≤ n+ 1
n

.

Later, H. Alzer [4] proved

(4.14)
n+ 2

√
2− 1

n+ 1
≤ [(n+ 1)!]

1
n+1

(n!)
1
n

≤ n+ 2
n+ 1

.

From the identity Γ(n + 1) = n! we know that inequalities (4.13) and (4.14)
can be rewritten as

(4.15) 1 ≤ [Γ(n+ 2)]
1

n+1

[(Γ(n+ 1)]
1
n

≤ n+ 1
n

and

(4.16)
n+ 2

√
2− 1

n+ 1
≤ [Γ(n+ 2)]

1
n+1

[(Γ(n+ 1)]
1
n

≤ n+ 2
n+ 1

,

respectively. Recently, F. Qi and C. P. Chen [19] gave the following result:

(4.17)
(
x+ 1
y + 1

) 1
2

<
[Γ(x+ 1)]

1
x

[Γ(y + 1)]
1
y

<
x+ 1
y + 1

, x > y > 0.

It is obvious that inequality (1.4) is an improvement of inequality (4.17). In
fact, 1− 2π2e−

13
3 = 0.740947 · · · .

Proof of Theorem 5. If x ≥ 1, then Theorem 4 implies

(4.18)

(
x+ 2
x+ 1

)1−2π2e−
13
3

≤
(
x+ 2
x+ 1

)1− log x+b
2x

<
[Γ(x+ 2)]

1
x+1

[Γ(x+ 1)]
1
x

<

(
x+ 2
x+ 1

)1− 2 log (x+1)+c
15(x+1)

.

Theorem 3 leads to

(4.19) [Γ(x+ 2)]
1
x+1

[Γ(x+ 1)]
1
x

<

(
x+ 2
x+ 1

) (x+2)(x+1− 1
2 log(x+1)− 1

6(x+1) + 1
90(x+1)3

−a)

(x+1)2

,
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where a = 1
2 log(2π)− 1

2 . By calculation, it is not difficult to verify

(4.20)
1 +

(x+ 1)− x+2
2 log x− [ 12 log(2π)− 1

2 ]x+ [1− log(2π)]
(x+ 1)2

< 1− log x− 3 + log(2π)
2x

.

Inequality (4.20) leads to

(4.21)

(x+ 2)[(x+ 1)− 1
2 log(x+ 1)− 1

6(x+1) + 1
90(x+1)3 − a]

(x+ 1)2

<
(x+ 2)[(x+ 1)− 1

2 log x− a]
(x+ 1)2

= 1 +
(x+ 1)− x+2

2 log x− [ 12 log(2π)− 1
2 ]x+ [1− log(2π)]

(x+ 1)2

< 1− log x− 3 + log(2π)
2x

= 1− log x− d

2x
.

Therefore, inequality (1.5) follows from inequalities (4.18)-(4.19) and (4.21).
Next, if n ≥ 1, n ∈ N, then inequality (1.5) implies

(4.22)(
n+ 2
n+ 1

)1− logn+b
2n

<
[(n+ 1)!]

1
n+1

(n!)
1
n

=
[Γ(n+ 2)]

1
n+1

[Γ(n+ 1)]
1
n

<

(
n+ 2
n+ 1

)1−g(n)

.

For n ≥ 1, n ∈ N, it is not difficult to verify

(4.23) 1− log n+ b

2n
≥ 1− ln 2 + b

4
=

22− 3 log 2− 6 log(2π)
12

.

Hence inequality (1.6) follows from inequalities (4.22) and (4.23). ¤

Remark 2. Comparing inequality (1.6) with inequality (4.14) we know that
(
n+ 2
n+ 1

)1−g(n)

<
n+ 2
n+ 1

for all n ≥ 1

and

(4.24)
(
n+ 2
n+ 1

)1− logn+b
2n

>
n+ 2

√
2− 1

n+ 1
for all n ≥ 9.

In fact, if taking g(n) = (n+2
n+1 )1−

logn+b
2n and h(n) = n+2

√
2−1

n+1 . Then for n = 9,
by science computation, we get

g(9) = 1.085306 · · · > h(9) = 1.082842 · · · .
For n ≥ 10, let

f(x) = 2x− log x− b− 2(
√

2− 1)
2x2 + 3x
x+ 1

, x ≥ 10.



A FUNCTION INVOLVING GAMMA FUNCTION WITH APPLICATIONS 381

Then

(4.25)

(x+ 1)2f ′(x) = x[(6− 4
√

2)x+ (11− 8
√

2)]− 1
x
− 6(

√
2− 1)

> x[10(6− 4
√

2) + (11− 8
√

2)]− 1
x
− 6(

√
2− 1)

> 10(71− 48
√

2)− 1
10
− 6(

√
2− 1)

= 28.592208 · · · > 0.

Inequality (4.25) implies

(4.26)
2n− (log n+ b)− 2(

√
2− 1)

2n2 + 3n
n+ 1

= f(n) ≥ f(10) = 0.033360 · · · > 0

for n ≥ 10. Inequality (4.26) leads to

(4.27)
(

1− log n+ b

2n

)
2

2n+ 3
>

2
√

2− 2
n+ 1

.

If t > 0, then it is easy to prove that

t > log(1 + t) >
2t
t+ 2

,

hence we have

(4.28) log
(
n+ 2
n+ 1

)
>

2
2n+ 3

and

(4.29) 2(
√

2− 1)
n+ 1

> log
n+ 2

√
2− 1

n+ 1
.

Combining inequalities (4.27)-(4.29) we get

(
n+ 2
n+ 1

)1− logn+b
2n

>
n+ 2

√
2− 1

n+ 1
.

Proof of Theorem 6. For x ≥ 1, let

f(x) =
28

45(x+ 1)
+

5
x+ 2

+ 2 log(x+ 1) + (2 log(2π)− 7).
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Then

(4.30)

(x+ 1)2f ′(x) = − 28
45
− 5(x+ 1)2

(x+ 2)2
+ 2(x+ 1)

> − 28
45
− 5(x+ 1)

x+ 2
+ 2(x+ 1)

= − 28
45

+ 2(x+ 1)
[
1− 5

2(x+ 2)

]

≥ − 28
45

+
2
3

=
2
45

> 0

for all x ≥ 1.
Inequality (4.30) implies

28
45(x+ 1)

+
5

x+ 2
+ 2 log(x+ 1) + (2 log(2π)− 7)

= f(x) ≥ f(1) = 0.039826 · · · > 0,

which leads to

(4.31) 4x+ 3
4x+ 4

>
(x+ 2)(x+ 1− 1

2 log(x+ 1)− 1
6x+6 + 1

90(x+1)3 − a)

(x+ 1)2
.

Therefore, inequality (1.7) follows from inequalities (4.19) and (4.31), and in-
equality (1.8) follows from inequality (1.7) and identity Γ(n+ 1) = n!. ¤

Remark 3. Inequality (1.8) improves the upper bound of inequality (4.14).
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[17] J. Pečarić, G. Allasia, and C. Giordano, Convexity and the gamma function, Indian J.

Math. 41 (1999), no. 1, 79–93.
[18] F. Qi and C. P. Chen, A complete monotonicity property of the gamma function, J.

Math. Anal. Appl. 296 (2004), no. 2, 603–607.
[19] , Monotonicity and convexity results for functions involving the gamma function,

Int. J. Appl. Math. Sci. 1 (2004), 27–36.
[20] F. Qi, B. N. Guo, and C. P. Chen, The best bounds in Gautschi-Kershaw inequalities,

Math. Inequal. Appl. 9 (2006), no. 3, 427–436.
[21] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University

Press, New York, 1962.

Yuming Chu
Department of mathematics
Huzhou teachers college
Huzhou 313000, P. R. China
E-mail address: chuyuming@hutc.zj.cn

Xiaoming Zhang
Haining radio and tv University
Haining 314400, P. R. China
E-mail address: zjzxm79@126.com

Zhihua Zhang
Zixing municipal school
Zixing 423400, P. R. China
E-mail address: zxzh1234@163.com


