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INTEGRAL INEQUALITY REGARDING »-CONVEX AND
r-CONCAVE FUNCTIONS

WAADALLAH T. SULAIMAN

ABSTRACT. New integral inequalities concerning r-convex and r-concave
functions are presented.

1. Introduction
The following open question was proposed in [5].
Under what conditions does the inequality

(1.1) /dﬂwﬂxwxz/dﬂV%@

0 0
hold for « and 37

The authors in [4], [1], and [2] have been dealt gradually with this inequality
assuming different conditions, but I think the idea of [1] is the best.

In [1], the authors gave an answer by establishing the following.

Theorem 1.1. If the function f satisfies

1 2
(1.2) /O F(tydt > X 2”5 , Yz elo1],
then
1 1
) a+f3 d B ra d
(1.3) Af (@wZAwf(@w

for every real a« > 1 and 3 > 0.

Very recently, Liu, Cheng, and Li established a more general case by giving
the following result.

Theorem 1.2. Let f(x) > 0 be a continuous function on [a,b] satisfying

b b
(1.4) / fmin8) (gt 2/ (t —a)™A gt Y € [a,b].
x
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Then the inequality

b b
(1.5) / o8 (o)de > / (& — a)° f(z)dz,

holds for every positive real number o > 0, 3 > 0.

The gamma function is denoted by I'(p) and is defined by

L(p) :/ P e %dx, p>0.
0

A function f : [a,b] — R is said to be convex if

(1.6)  fltz+ (1 =ty <tf(z)+ (A =0)f(y), zy¢elab], tc[0,1].

If the inequality is reversed, then f is said to be concave.
A positive function f is log-convex on a real interval [a, b] if for all z,y € [a, b]
and ¢ € [0,1], we have

(1.7) fltz+ (1 =1)y) < f'(z) + O (y).

A positive function f is r-convez on [a,b] if for all z,y € [a,b] and t € [0, 1],

tf7 (@) + (L= f" ()", r#0
(18)  fltz+(1—t)y) = { (tf7(w) 4 ) )
fH@) f14 (), r=0.
If the above inequality reverses, then f is r-concave.
Clearly, the 0-convex functions are simply the log-convex functions and 1-
convex functions are ordinary convex functions.
Hadamard inequality is as follows

(1.9 (95 < 5 [ rwa < 100,

provided f is convex.

Very recently, concerning inequality (1.3), about more than 10 papers have
been published. Since Hadamard inequality dealing with convex and concave
functions is important in analysis, it is reasonable to incorporate inequalities
similar to (1.3) with Hadamard inequality to find new inequalities that are
probably important in analysis and applications.

2. A lemma and Hadamard inequality
Lemma 2.1. Let a,b> 0,t € [0,1]. Then
(2.1) a7t a7 < a+ b

Proof. Set
fla)=a+b—a'd't — a0,
Then, we have

flla)=1—ta" o' " — (1 —t)a ' =0, if a=b,
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and
[f"(@)]amp = [t(1 = )a’ 2Dt 4 t(1 — t)a~ " 04y = 2t(1 — t)a™ ! > 0.
This shows that f attains its minimum at a = b which is zero. Therefore

fa) = f(0) =0. 0

Theorem 2.2. Let f : [a,b] — R be a positive r-convex function (r # 0). Then
f7 satisfies the Hadamard inequality. That is,

ey () ik [ rww< SO0

Furthermore, if f is 0-convex, then (2.2) is satisfied, and also we have

1o f7(a) — f7(b)
(2.3) b_ a/a f (I)d-ﬁ < lnfr(a) _ lnfr(b)

If f is r-concave or 0-concave, then (2.2) and (2.3) are reversed.

Proof. If f is r-convex, then f” is convex, and therefore it satisfies the Hada-
mard inequality. If f is O-convex, then

Ffa+by 1 b (rta+tb—zx
() =)

< bfa/b (F2@) 20+ b)) do
b 1/2 b 1/2
< b1a</a f’"(w)dw> (/ fr(a+b—w)dm>
b

_ bia/ £ (2)da
= lfr(ta-l-(l—t)b)dt

0
= ;( | fr(ta+(1—t)b)dt+/0 fr((l—t)&—l—tb)dt)

1 ! tT‘a (1—t)r ! (17t)ra tr
< 5([ fr@srea [ @ o)
= 5 ([ (r@sre @ o) ) d
< % | (f"(a)+ f(b))dt (by Lemma 2.1)

2
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Also, the 0-convexity of f implies

b 1
bia/ fr(@)dz = /Of’“(ta+(1—t)b)dt

IN

1
/“ﬁ%@ﬂkaMt
0

e [ F@\™
ro <f(b)> at
[7(a) — J7(b)
I /7 (a) ~n /7 (0)" -

3. Main results

We state and prove the following:

Theorem 3.1. Let f, g be non-negative continuous functions defined on [a, b,
g is a-concave (o # 0) with ¢'(z) < 1,Vx € [a,b] and let a, 5 > 0. If

(3.1) /b Fot)dt > /bga(t)da Vz € [a,b],

/: ferP(z)da — /ab f%=z)In (Z:Z> dx

> 8 (1 (9a+1(b> —9" @ L o a)g“(b)) —r@E+ a/ﬂ))

2 a—+1

then

(3.2)

(0%

2

If g is 0-concave with ¢'(x) > 1, g(x)/4¢'(z) is non-increasing and (3.1) is sat-
isfied, then
(3.3)

/ " o ) / e ) )

B ( g ey IO =g @) B arags
= o (ag’(b) <(b )9°(b) a+1 > 26+a(b ) >

Proof. In view of Theorem 2.2, we have

/ab /: f"“(t)ﬁdtdm

A ( / fa@)dt) L
/ab (/:ga(t)dt> bixdac

Y
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g% (x) +g°(b)
= / g &

b
> 5 [ @@+ g ) do
(£
a+1

. +b- 0 0)).

Also, via changing the order of integration, we have

/ab/:fo‘(t)bixdtdx /abfa(t)dt/atbixdx

b
b—a
1 “(t)dt.
[u(=)mo
Collecting the above results, we obtain

[n (5 )iz 5 (O s 0w,

Applying the AG inequality,

ForB) + — D potBp) > fon)hB(x), h(z) > 0.

a+p

On putting h(z) = Int/? (;;:—i) , we obtain

o a+p3 6 14+a/8 b_ia a b—a
a+ﬂf+($)+a+ﬂln+ (bx)zf(x)hl(bx)’

«

a+p

or

o= oo (32) 2 2 (o (=5 -wve (32))

Integrating the above gives

/abfa+ﬂ(a:)dx - bf"(w)ln (Z:Z)dx

a

B[, b—a b e (b—a
ZCY(/a f (x)1n<b_x>da:—/a In'* /5<b_$>d:17>.

b—a
b—x

b oo
b—
/ In'te/8 ( a)% = / utte/Petdy = T'(2 + a/B),

b—x 0

(3.4)

Now, on putting In ( ) = u, we have
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/ forh () / fo(z m( )d:c
o) —g*tHa)

T R}

If g is 0-concave and ¢'(x) > 1, then by Theorem 2.2,

//fa In g%( bilng()dtd
/(/f dt)lng(()) ng*(z)
2/@ (/ ()dt> Ing® (bz))_:lga(x)dx

b
> / (g°(b) — °(a)) do

and hence

b
> / (6°(b) — ¢°(2)g'(2)) da

_ o g°tH(b) — g**'(a)
= (b—a)g*(b) — T 1 :

By changing the order of integration, we have

/ [t O e g,

fa( ) / lnga(bl)):glga@)dz

dt/ dx

(for some ¢, £ < ¢ < b, by the mean value theorem)
g'() / ’ o
=« t—a)f*(t)dt
o0 J, 7O
Collecting the above, we obtain

/"@_a)fa(t)dt . 90 <(b_a)ga(b)_ga+l<b>—ga+1<a>)

ag'(c) a+1
g(b) ey 90 — g7 (a)
20 (0-as0) ),

Similarly, as we did in the previous result, we have

P = @ a2 (@ -0 - @),
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Integrating the above to obtain

[ e [e-arsw

B ([ gb) ey SO =g @) B avags
> ¢ (o (-0 - ) - - )'D

Theorem 3.2. Let f, g be non-negative continuous functions defined on [a, b,
g is a-convex or 0-convex with ¢'(z) < 1,Vx € [a,b], and let , 5 > 0. If (3.1)
is satisfied, then

(3.5)

b b b—a 3 b
/ faJ“G(:z:)do:—/ f%z)In ()dx > = 2/ f¥z)dz—T2+a/B) ).
a a b—x «a atb
Proof. By virtue of Theorem 2.2, we have
b b 1 b b 1
() —— dtda / / Fo)dt do
/a /x b—x o . b—x
b
b
for(50) e
a 2
Also, by changing the order of integration, we have, as before

/ab /: fa(t)ﬁdtdx = /abln (Z:‘;>f“(t)dt.

Therefore, we have

(3.6) /ab In <l;_;l>fa(t)dt > /ab 7o <t;b> dt.

If we proceeding exactly as we did in the proof of Theorem 3.1, using the above
estimation, we have

/abfa+ﬁ(x)dx/abfo‘(x)ln<lb)_;>dz
> g (/abfa (x";b) dx—l“(2+a/6)>

b
_ g (2 /i Fa)dr —T(2 + a/ﬁ)) .

Y
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If g is O-convex with ¢'(x) < 1,Vz € [a,b], then by making use of (3.4) and
(3.6), we obtain
b b
h—
/ et (z)de —/ f%z)In <b a)d;v
a a -

S([ (5o

= g (2 [Hrb f(x)dx — F(2+a/ﬁ)> .

Theorem 3.3. Let f, g be non-negative continuous functions defined on [a,b], g
is a-convex (o # 0) with ¢'(x) > 1, and let 0 < B < a < 2. If

O

(3.7) / " paydt < / g Bdt Vo € o],
then
(3.8)
b _ a a+1 _ o+l a —a
/afa—ﬁ(x)dxg(l o )<g e <))+b2 o*(@)+2r@-a/p).

Also, if g is 0-convex with ¢'(x) > 1 and g(x)/¢'(x) is non-increasing, we have

b
a—b(pgy < @=P9@) (¢ O) —g°t (@) o
(39 [t < ESTER (FE2E - - )

B
+2oz—ﬂ

(b—a)?=/P,

Proof. By Theorem 2.2,

/(Ib/:fa(t)mia(itd:c = /ab </azf“(t)dt>xiadx

b
5 [ 0@+ g @) ds

IN

b
< 2 / (6%(a) + 9°(2)g (z)) da

2
1 g (b) — gt (a)>

= 3 (0-ar@+

Also, by changing the order of integration, we have

/ab/jfo‘(t)mi(ldtdx - /abf“(t)dt/t
/ab F(t) In <

a+1

1
a

b
dz
Tz —
h—
a>dt.
t—a
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The above result implies
1 a+1 _ o+l
o< L (L0

/abfa(t)ln< 2 at1

Making use of the AG inequality, we have
o ﬁ
a—p3 T
@) -
On putting k(z) = In~'/? ( = ) we obtain

& ra- B —a/p(b—a o b—a
S - e (22 < pem (222,

foP(x) < (1 - B/a)f*(x)In (i:i) + élnlfa/ﬁ (b—a) :

Integrating the above inequality gives

b
/ e P (z)dx
< (1- B/a) / (@) (2:) do+ D / " e/ CZ:) iz

_ a a+1 _ o+l a —a
< (1 Qﬂ/ ) (9 (bi+91 ( )>+b2 ga(a)+§r(2_a//@)~

Concerning inequality (3.9), if we are assuming

1_/ / fo(nma’ lng @) ttdz,

then as we dealt before, it is not dlfﬁcult to show that
g°t(b) — g**'(a)

=g

— kB @) < @)k P(x), k(z) > 0.

or

IS O[+1 7(bia)ga(a)7
and
/ b
. ozgg((j)) / (b— 1) (t)dt

(for some d, a < d < x, by the mean value theorem),

which together implies

’ o g(d) (g°*'(b) —g**'(a) a
[o-nrwa < 20 (LU0 o)
gla) (g°*'(b) —g*"'(a) o
i (T e ar@).

By using the AG inequality as before, we get

B

oA < (1= Bla)f (@)~ ) + (b — )=/,

381
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Integrating the above gives
_ a-‘rl _ o+l
/ fo- [3 dl‘ < ( . ﬂzc)( ) ( (bo)é +gl (a) _ (b—a)go‘(a)>

B _ 20/
2a7ﬁ(b a) .

+

O

Theorem 3.4. Let f, g be non-negative continuous functions defined on [a,b],
g is a-concave with ¢'(x) > 1, and let 0 < B8 < a < 26. If (3.1) is satisfied,
then

(3.10) /ab Fo 8 (2)de < (1 — ﬁ/a)/ o <f” i a) dx + gm —a/B).

Proof. By Theorem 2.2 we have
b x 1
*(t)dt
[ o) =

/ab /j f“(t)ﬁdtdx
/ fo (a+x) .

As before ) X
Y e 1 o b—a

Therefore, we get
b
b—a t+a
“@)In | — @ dt.
[rrom(G=tas [ (5)
Making use of the AG inequality, we have as before

[ e
<t [ rrem (S=DYars 2 [ (20 g

< (1—6/a)/ a(““)dx+§r<z—a/ﬁ>. -
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