• 제목/요약/키워드: $({\alpha},{\beta})^*$-derivations

검색결과 9건 처리시간 0.018초

ON GENERALIZED (α, β)-DERIVATIONS IN BCI-ALGEBRAS

  • Al-Roqi, Abdullah M.
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.27-38
    • /
    • 2014
  • The notion of generalized (regular) (${\alpha},\;{\beta}$)-derivations of a BCI-algebra is introduced, some useful examples are discussed, and related properties are investigated. The condition for a generalized (${\alpha},\;{\beta}$)-derivation to be regular is provided. The concepts of a generalized F-invariant (${\alpha},\;{\beta}$)-derivation and ${\alpha}$-ideal are introduced, and their relations are discussed. Moreover, some results on regular generalized (${\alpha},\;{\beta}$)-derivations are proved.

REMARKS ON GENERALIZED JORDAN (α, β)*-DERIVATIONS OF SEMIPRIME RINGS WITH INVOLUTION

  • Hongan, Motoshi;Rehman, Nadeem ur
    • 대한수학회논문집
    • /
    • 제33권1호
    • /
    • pp.73-83
    • /
    • 2018
  • Let R be an associative ring with involution * and ${\alpha},{\beta}:R{\rightarrow}R$ ring homomorphisms. An additive mapping $d:R{\rightarrow}R$ is called an $({\alpha},{\beta})^*$-derivation of R if $d(xy)=d(x){\alpha}(y^*)+{\beta}(x)d(y)$ is fulfilled for any $x,y{\in}R$, and an additive mapping $F:R{\rightarrow}R$ is called a generalized $({\alpha},{\beta})^*$-derivation of R associated with an $({\alpha},{\beta})^*$-derivation d if $F(xy)=F(x){\alpha}(y^*)+{\beta}(x)d(y)$ is fulfilled for all $x,y{\in}R$. In this note, we intend to generalize a theorem of Vukman [12], and a theorem of Daif and El-Sayiad [6], moreover, we generalize a theorem of Ali et al. [4] and a theorem of Huang and Koc [9] related to generalized Jordan triple $({\alpha},{\beta})^*$-derivations.

REMARKS ON GENERALIZED (α, β)-DERIVATIONS IN SEMIPRIME RINGS

  • Hongan, Motoshi;ur Rehman, Nadeem
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.535-542
    • /
    • 2017
  • Let R be an associative ring and ${\alpha},{\beta}:R{\rightarrow}R$ ring homomorphisms. An additive mapping $d:R{\rightarrow}R$ is called an (${\alpha},{\beta}$)-derivation of R if $d(xy)=d(x){\alpha}(y)+{\beta}(x)d(y)$ is fulfilled for any $x,y{\in}R$, and an additive mapping $D:R{\rightarrow}R$ is called a generalized (${\alpha},{\beta}$)-derivation of R associated with an (${\alpha},{\beta}$)-derivation d if $D(xy)=D(x){\alpha}(y)+{\beta}(x)d(y)$ is fulfilled for all $x,y{\in}R$. In this note, we intend to generalize a theorem of Vukman [5], and a theorem of Daif and El-Sayiad [2].

CONTINUITY OF (α,β)-DERIVATIO OF OPERATOR ALGEBRAS

  • Hou, Chengjun;Meng, Qing
    • 대한수학회지
    • /
    • 제48권4호
    • /
    • pp.823-835
    • /
    • 2011
  • We investigate the continuity of (${\alpha},{\beta}$)-derivations on B(X) or $C^*$-algebras. We give some sufficient conditions on which (${\alpha},{\beta}$)-derivations on B(X) are continuous and show that each (${\alpha},{\beta}$)-derivation from a unital $C^*$-algebra into its a Banach module is continuous when and ${\alpha}$ ${\beta}$ are continuous at zero. As an application, we also study the ultraweak continuity of (${\alpha},{\beta}$)-derivations on von Neumann algebras.

ON GENERALIZED (α, β)-DERIVATIONS AND COMMUTATIVITY IN PRIME RINGS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • 대한수학회보
    • /
    • 제43권1호
    • /
    • pp.101-106
    • /
    • 2006
  • Let R be a prime ring and I a nonzero ideal of R. Let $\alpha,\;\nu,\;\tau\;R{\rightarrow}R$ be the endomorphisms and $\beta,\;\mu\;R{\rightarrow}R$ the automorphisms. If R admits a generalized $(\alpha,\;\beta)-derivation$ g associated with a nonzero $(\alpha,\;\beta)-derivation\;\delta$ such that $g([\mu(x),y])\;=\;[\nu/(x),y]\alpha,\;\tau$ for all x, y ${\in}I$, then R is commutative.

MULTIPLICATIVE (GENERALIZED) (𝛼, 𝛽)-DERIVATIONS ON LEFT IDEALS IN PRIME RINGS

  • SHUJAT, FAIZA
    • Journal of Applied and Pure Mathematics
    • /
    • 제4권1_2호
    • /
    • pp.1-7
    • /
    • 2022
  • A mapping T : R → R (not necessarily additive) is called multiplicative left 𝛼-centralizer if T(xy) = T(x)𝛼(y) for all x, y ∈ R. A mapping F : R → R (not necessarily additive) is called multiplicative (generalized)(𝛼, 𝛽)-derivation if there exists a map (neither necessarily additive nor derivation) f : R → R such that F(xy) = F(x)𝛼(y) + 𝛽(x)f(y) for all x, y ∈ R, where 𝛼 and 𝛽 are automorphisms on R. The main purpose of this paper is to study some algebraic identities with multiplicative (generalized) (𝛼, 𝛽)-derivations and multiplicative left 𝛼-centralizer on the left ideal of a prime ring R.

ON (${\sigma},\;{\tau}$)-DERIVATIONS OF PRIME RINGS

  • Kaya K.;Guven E.;Soyturk M.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권3호
    • /
    • pp.189-195
    • /
    • 2006
  • Let R be a prime ring with characteristics not 2 and ${\sigma},\;{\tau},\;{\alpha},\;{\beta}$ be auto-morphisms of R. Suppose that $d_1$ is a (${\sigma},\;{\tau}$)-derivation and $d_2$ is a (${\alpha},\;{\beta}$)-derivation on R such that $d_{2}{\alpha}\;=\;{\alpha}d_2,\;d_2{\beta}\;=\;{\beta}d_2$. In this note it is shown that; (1) If $d_1d_2$(R) = 0 then $d_1$ = 0 or $d_2$ = 0. (2) If [$d_1(R),d_2(R)$] = 0 then R is commutative. (3) If($d_1(R),d_2(R)$) = 0 then R is commutative. (4) If $[d_1(R),d_2(R)]_{\sigma,\tau}$ = 0 then R is commutative.

  • PDF

On Skew Centralizing Traces of Permuting n-Additive Mappings

  • Ashraf, Mohammad;Parveen, Nazia
    • Kyungpook Mathematical Journal
    • /
    • 제55권1호
    • /
    • pp.1-12
    • /
    • 2015
  • Let R be a ring and $D:R^n{\longrightarrow}R$ be n-additive mapping. A map $d:R{\longrightarrow}R$ is said to be the trace of D if $d(x)=D(x,x,{\ldots}x)$ for all $x{\in}R$. Suppose that ${\alpha},{\beta}$ are endomorphisms of R. For any $a,b{\in}R$, let < a, b > $_{({\alpha},{\beta})}=a{\alpha}(b)+{\beta}(b)a$. In the present paper under certain suitable torsion restrictions it is shown that D = 0 if R satisfies either < d(x), $x^m$ > $_{({\alpha},{\beta})}=0$, for all $x{\in}R$ or ${\ll}$ d(x), x > $_{({\alpha},{\beta})}$, $x^m$ > $_{({\alpha},{\beta})}=0$, for all $x{\in}R$. Further, if < d(x), x > ${\in}Z(R)$, the center of R, for all $x{\in}R$ or < d(x)x - xd(x), x >= 0, for all $x{\in}R$, then it is proved that d is commuting on R. Some more related results are also obtained for additive mapping on R.

STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C*-ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION

  • Eghbali, Nasrin;Hazrati, Somayeh
    • 대한수학회논문집
    • /
    • 제31권1호
    • /
    • pp.101-113
    • /
    • 2016
  • In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sigma}$ is an involution of the Lie $C^*$-algebra A and k is a fixed positive integer. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided.