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CONTINUITY OF (α, β)-DERIVATIONS

OF OPERATOR ALGEBRAS

Chengjun Hou and Qing Meng

Abstract. We investigate the continuity of (α, β)-derivations on B(X)

or C∗-algebras. We give some sufficient conditions on which (α, β)-
derivations on B(X) are continuous and show that each (α, β)-derivation
from a unital C∗-algebra into its a Banach module is continuous when
α and β are continuous at zero. As an application, we also study the

ultraweak continuity of (α, β)-derivations on von Neumann algebras.

1. Introduction

Let B be a complex algebra with a subalgebraA, let α and β be two mappings
from A into B, letM be a B-module and hence an A-module. A linear mapping
δ fromA intoM is called an (α, β)-derivation, if δ(AB) = δ(A)α(B)+β(A)δ(B)
holds for all A, B ∈ A; moreover, δ is called inner, if there exists M0 ∈ M
such that δ(A) = M0α(A) − β(A)M0 for each A ∈ A. An (α, α)-derivation is
called briefly an α-derivation. Clearly, an id-derivation is an ordinary linear
derivation, where id denotes the embedding map from A into B, and every
endomorphism α on A is an α

2 -derivation on A. Note that in our definition of
an (α, β)-derivation, no extra assumptions on α and β, such as linearity, are
required. The purpose of this note is to investigate the continuity of (α, β)-
derivations from Banach algebras into their Banach modules.

In 1958, Kaplansky conjectured that every derivation on a C∗-algebra or a
semisimple Banach algebra is continuous ([7, 8]). Sakai confirmed Kaplansky’s
conjecture for the C∗-algebra case in [14], and from this, Kadison deduced the
ultraweak continuity of derivations when the C∗-algebras are represented on
Hilbert spaces ([5]). In [13], Ringrose generalized these results to the deriva-
tions from C∗-algebras into their Banach modules. The conjecture on the
continuity of derivations on semisimple Banach algebras by Kaplansky was
confirmed by Johnson and Sinclair in [4]. For the detail on automatic continu-
ity of derivations of Banach algebras, we refer to [3, 15].
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On the continuity of (α, β)-derivations on C∗-algebras, M. Mirzavazibri and
S. Moslehian proved that each ∗-(α, β)-derivation from a C∗-algebra A acting
on a Hilbert space H into B(H) is continuous under the assumption that α and
β are ∗-linear continuous mappings from A into B(H) ([10, 11, 12]).

For an (α, β)-derivation δ from a Banach algebra A into a Banach A-module
M, if both α and β are bounded algebraic homomorphisms from A into itself,
then M, equipped with the A-module actions defined by A · M = β(A)M ,
M ·A = Mα(A), is also a Banach A-module, denoted by Mα,β , and δ is indeed
an ordinary derivation from A into Mα,β . Hence it is interesting to study
the continuity of an (α, β)-derivation when at least one of α and β is not an
algebraic homomorphism.

This note is organized as follows. In Section 2 we give two examples of
continuous (α, β)-derivations for two nonlinear and non-continuous mappings
α and β. In Section 3 we give some sufficient conditions on which an (α, β)-
derivation on B(X), the algebra of all bounded linear operators on a complex
Banach space X, is continuous. In particular, we show that if X is simple
and α, β are surjective and continuous at zero, then each (α, β)-derivation on
B(X) is continuous. In Section 4, using a similar argument to the proof in
[13], we show that every (α, β)-derivation of a unital C∗-algebra into its a
Banach module is continuous if α, β are continuous at zero, which generalizes
the main results in [10]. As corollaries, we also get the ultraweak continuity
of (α, β)-derivations of von Neumann algebras when the ultraweak continuity
and linearity on α and β are required.

For a complex Banach space X, we denote by X∗, B(X) and K(X), the
Banach dual space of X, the algebra of all bounded linear operators on X and the
ideal of all compact operators in B(X), respectively. For nonzero vectors ξ ∈ X
and f ∈ X∗, we denote by ξ⊗f the rank operator defined by (ξ⊗f)(η) = f(η)ξ
for each η ∈ X. Sometimes we write ⟨η, f⟩ in place of f(η). Let F1(X) denote
the set of all rank one operators on X. Obviously, A(ξ ⊗ f)B = (Aξ) ⊗ (B′f)
for all A,B ∈ B(X), ξ ∈ X, f ∈ X∗, where B′ denotes the transpose of the
bounded linear operator B, defined by ⟨ξ,B′f⟩ = ⟨Bξ, f⟩ for each ξ ∈ X and
f ∈ X∗.

2. Reduction and examples

Let A be a complex Banach algebra without identity. We take the direct
sum A ⊕ C as a linear space AI . By a well-known fact, AI , endowed with a
Banach algebra structure, is a unital Banach algebra. In addition, if A is a C∗-
algebra, then there exists a (unique) norm on AI which makes AI be a unital
C∗-algebra. If we identify each A ∈ A with (A, 0) ∈ AI , then A is a closed
two-sided ideal of AI ([6]). We write (A, λ) as A + λI for each (A, λ) ∈ AI .
If M is a Banach A-module, then it is a unital Banach AI -module under the
module action given by (A + λ)M = AM + λM and M(A + λ) = MA + λM
for every A+ λ ∈ AI and M ∈ M.
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For a given mapping σ : A → A, we can obtain its extension σI to AI by
σI(A+ λ) = σ(A) + λ for each A+ λ ∈ AI . Then σI is linear if and only if so
is σ, σI preserves the identity of AI if and only if σ(0) = 0, and when A is a
C∗-algebra, σI is a *-mapping if and only if so is σ. In both Banach algebra
and C∗-algebra cases, σI is continuous at 0 if and only if so is σ.

For an (α, β)-derivation δ from A into M, since δ is linear, we have δ(0) = 0.
Using the equation 0 = δ(0) = δ(A0) = δ(0A), we have δ(A)α(0) = 0 and
β(0)δ(A) = 0 for each A ∈ A. Hence if let α0(A) = α(A)− α(0) and β0(A) =
β(A)− β(0) for each A ∈ A, then δ is a (α0, β0)-derivation. So, for an (α, β)-
derivation δ, we sometimes can assume that α(0) = 0 and β(0) = 0. Define
the mapping δI from AI into M by δI(A, λ) = δ(A) for each (A, λ) ∈ AI .
Then δI is an (αI , βI)-derivation from AI into M, and δI(0, 1) = δ(0) = 0,
αI(0, 1) = (0, 1) and βI(0, 1) = (0, 1) by the assumptions that α(0) = 0 and
β(0) = 0. Obviously, δ is bounded if and only if so is δI .

Hence, to obtain the continuity of an (α, β)-derivation δ of a Banach algebra
A into its a Banach module M, sometimes we can assume that A is unital, M
is a unital A-module, δ(1) = 0, α(0) = β(0) = 0 and α(1) = β(1) = 1, where 1
is the identity of A.

The following examples yield continuous (α, β)-derivations without the as-
sumption of linearity and continuity of α and β.

Example 2.1. Let A be a von Neumann algebra acting on a separable Hilbert
space H, A ̸= B(H). Let α0 and β0 be bounded homomorphisms of A into
itself, f0, g0 : A → C be two functionals without linearity and continuity, T0

and S0 be nonzero operators in A′ with T0S0 = S0T0 = 0. Define the mappings
α, β and δ from A into B(H) by

α(A) = α0(A) + f0(A)S0, β(A) = β0(A) + g0(A)S0, δ(A) = T0α(A)− β(A)T0

for each A ∈ A. Then α and β are neither continuous nor linear, and δ
is an (α, β)-derivation from A into B(H). By calculation, we have δ(A) =
T0α0(A)− β0(A)T0 for each A ∈ A, hence δ is continuous.

Example 2.2. Let H be a separable infinite dimensional Hilbert space, V ∈
B(H) a partial isometry with V ∗V = I, V V ∗ = P ̸= I. Let T0 ∈ B(H) be a self-
adjoint operator with T0P = 0, let f0 : B(H) → {V ∗}′ be a mapping without
linearity and continuity, (e.g., f is an nonlinear and non-continuous functional
on B(H)), where {V ∗}′ is the commutant of {V ∗} in B(H). Define the mappings
α, δ, : B(H) → B(H) by α(A) = 1

2 (V AV ∗ + f0(A)T0) and δ(A) = V AV ∗ for
each A ∈ B(H). Then α is neither linear nor continuous on B(H), but δ is a
continuous α-derivation.

3. The B(X) case

In the following lemma, we list some properties given in [10] of an (α, β)-
derivation.
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Lemma 3.1 ([10]). Let B be a complex algebra with a subalgebra A and let
M be a B-module. Let α, β : A → B be two mappings. If δ is an (α, β)-
derivation from A into M, then, for each λ, µ ∈ C and A,B,C ∈ A, the
following equations hold:

(i) δ(A)α(0) = β(0)δ(A) = 0;
(ii) δ(A)(α(λB + µC)− λα(B)− µα(C)) = 0;
(iii) (β(λA+ µB)− λβ(A)− µβ(B))δ(C) = 0;
(iv) (β(AB)− β(A)β(B))δ(C) = δ(A)(α(BC)− α(B)α(C)). In particular,

(β(0)− β(0)β(B))δ(C) = 0 = δ(A)(α(0)− α(B)α(0)).

Proof. By the equation 0 = δ(0) = δ(A0) = δ(0A), we can obtain (i). Using
the linearity and the multiplicative rule of δ to expand the left of the following
equations: δ(A(λB+µC))−λδ(AB)−µδ(AC) = 0, δ((λA+µB)C)−λδ(AC)−
µδ(BC) = 0, δ((AB)C)− δ(A(BC)) = 0, we can get (ii), (iii) and (iv). □

Theorem 3.2. Let X be a complex Banach space, α and β be mappings from
B(X) into itself. Let δ : B(X) → B(X) be an (α, β)-derivation. Suppose that
α and β satisfy one of the following conditions:

(i) α is an automorphism, β is continuous at 0 and the set {β(T ) : T ∈
F1(X)} separates the points of X in the sense that, for each pair ξ, η ∈ X
with ξ ̸= η, there is a rank one operator T such that β(T )ξ ̸= β(T )η,
equivalently, the set {β(T ) : T ∈ F1(X)} has no nonzero right annihi-
lators in B(X).

(ii) β is an automorphism, α is continuous at 0 and the set {α(T ) : T ∈
F1(X)} has no nonzero left annihilators in B(X).

(iii) α and β are continuous at 0, span{α(T )ξ : T ∈ F1(X), ξ ∈ X} is dense
in X and there is a rank one S such that β(S) is injective.

Then δ is continuous. Moreover, if (i), or when X is reflexive and (ii), holds,
δ is inner.

Proof. In order to obtain the continuity of δ, we use the closed graph theorem.
Let An ∈ B(X), n = 1, 2, . . ., with An → 0 and δ(An) → A. For every
ξ ⊗ f, η ⊗ g ∈ F1(X) and n = 1, 2, . . ., we have

f(Anη)δ(ξ ⊗ g)

= δ(ξ ⊗ f ·An · η ⊗ g)

= δ(ξ ⊗ f)α(Anη ⊗ g) + β(ξ ⊗ f)δ(An)α(η ⊗ g) + β(ξ ⊗ f)β(An)δ(η ⊗ g).

If α and β are continuous at 0, letting n → ∞, we have

δ(ξ ⊗ f)α(0) + β(ξ ⊗ f)Aα(η ⊗ g) + β(ξ ⊗ f)β(0)δ(η ⊗ g) = 0.

Using Lemma 3.1, we have

β(ξ ⊗ f)Aα(η ⊗ g) = 0

for every ξ ⊗ f, η ⊗ g ∈ F1(X).
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If (i) holds, then for each η ⊗ g ∈ F1(X), we have Aα(η ⊗ g) = 0. Since α is
an automorphism, it is inner, i.e., there is an invertible bounded linear operator
T0 ∈ B(X) such that α(T ) = T0TT

−1
0 for each T ∈ B(X). So (AT0η) ⊗ g = 0

for all η ∈ X and g ∈ X∗. Hence A = 0. Consequently, δ is continuous.
In this case, we can show that δ is inner. Choose ξ0 ∈ X and f0 ∈ X∗ such

that f0(ξ0) = 1, and define the mappingA0 : X → X byA0ξ = δ(T−1
0 ξ⊗f0)T0ξ0

for each ξ ∈ X. Obviously, A0 is linear and bounded. For each T ∈ B(X) and
ξ ∈ X, we have

δ((Tξ)⊗ f0) = δ(T (ξ ⊗ f0)) = δ(T )α(ξ ⊗ f0) + β(T )δ(ξ ⊗ f0)
= δ(T )T0(ξ ⊗ f0)T

−1
0 + β(T )δ(ξ ⊗ f0).

Multiplying by the operator T0, we have

δ((Tξ)⊗ f0)T0 = δ(T )T0(ξ ⊗ f0) + β(T )δ(ξ ⊗ f0)T0.

Applying mappings in two sides of the equation to ξ0, we get A0(T0Tξ) =
δ(T )T0ξ + β(T )A0(T0ξ). Since ξ is arbitrary, we have A0T0T = δ(T )T0 +
β(T )A0T0, and hence δ(T ) = A0α(T ) − β(T )A0 for each T ∈ B(X). So δ is
inner.

If (ii) holds, then by the equation β(ξ⊗f)Aα(η⊗g) = 0, we have β(ξ⊗f)A =
0. Since β is an automorphism, there is an invertible bounded linear operator
S0 ∈ B(X) such that β(T ) = S0TS

−1
0 for each T ∈ B(X). So (ξ ⊗ f)S−1

0 A = 0
for all ξ ∈ X and f ∈ X∗. Hence A = 0, so δ is continuous.

In this case, choose ξ0 ∈ X and f0 ∈ X∗ such that f0(ξ0) = 1. We define the
mapping B0 : X → X by

⟨B0ξ, f⟩ = ⟨S−1
0 δ((ξ0 ⊗ f)S0)ξ, f0⟩, ξ ∈ X, f ∈ X∗.

Suppose that X is reflexive. Then B0 is well-defined. The continuity and
linearity of δ imply the continuity and linearity of B0. For each ξ ∈ X, f ∈ X∗

and T ∈ B(X), we have

⟨(β(T )B0 −B0α(T ))ξ, f⟩
= ⟨B0ξ, β(T )

′f⟩ − ⟨B0α(T )ξ, f⟩
= ⟨S−1

0 δ((ξ0 ⊗ β(T )′f)S0)ξ, f0⟩ − ⟨S−1
0 δ((ξ0 ⊗ f)S0)α(T )ξ, f0⟩

= ⟨S−1
0 δ((ξ0 ⊗ f)β(T )S0)ξ, f0⟩ − ⟨S−1

0 δ((ξ0 ⊗ f)S0)α(T )ξ, f0⟩
= ⟨S−1

0 δ((ξ0 ⊗ f)S0T )ξ, f0⟩ − ⟨S−1
0 δ((ξ0 ⊗ f)S0)α(T )ξ, f0⟩

= ⟨S−1
0 β((ξ0 ⊗ f)S0)δ(T )ξ, f0⟩

= ⟨(ξ0 ⊗ f)δ(T )ξ, f0⟩
= ⟨δ(T )ξ, f⟩.

Hence δ(T ) = β(T )B0 −B0α(T ) for each T ∈ B(X), and so, δ is inner.
Obviously, if (iii) holds, then A = 0, which yields the continuity of δ. □
For a linear mapping T from a Banach space E into a Banach space F, the

separating space S(T ) is defined to be the set of elements ξ in F such that
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there is a sequence {ξn} in E with ξn → 0 in E and T (ξn) → ξ in F. Clearly,

S(T ) = ∩∞
n=1{T (η) : ∥η∥ < 1

n}, hence is a closed linear subspace of F, and by
the closed graph theorem, T is continuous if and only if S(T ) = {0}.

Recall that a Banach space X is called simple, if B(X) has a unique nontrivial
norm-closed two-sided ideal. For example, lp (1 ≤ p < ∞), c0 and a separable
infinite dimensional Hilbert space H are simple. In this case, the norm closure
of all the finite rank operators is the ideal of compact operators, which is
wot-dense in B(X) and is the unique nontrivial norm-closed two-sided ideal of
B(X).

Proposition 3.3. Suppose that X is a simple complex Banach space, A is a
unital norm closed subalgebra of B(X), α, β : A → B(X) are surjective and
continuous at 0. If at least one of α and β is not an algebraic homomorphism,
then every (α, β)-derivation δ from A into B(X) is automatically continuous.

Proof. We first show thatS(δ) is a closed two-sided ideal ofB(X). For arbitrary
A ∈ S(δ) and B ∈ B(X), there is a sequence {An} in A with An → 0 and
δ(An) → A. Since α and β are surjective, there are S, T ∈ A such that B =
α(S) = β(T ). Hence TAn → 0, AnS → 0. Also since α and β are continuous at
0, using Lemma 3.1, we have δ(TAn) = δ(T )α(An)+β(T )δ(An) → δ(T )α(0)+
BA = BA and δ(AnS) = δ(An)α(S) + β(An)δ(S) → AB + β(0)δ(S) = AB.
Hence AB, BA ∈ S(δ). So S(δ) is a closed two-sided ideal of B(X). Since X
is simple, we have S(δ) = 0, B(X), or K(X).

For an arbitrary A ∈ S(δ), let {An} be a sequence in A with An → 0
and δ(An) → A. For all pairs B,C ∈ A, using (iv) of Lemma 3.1, we have
(β(AnB) − β(An)β(B))δ(C) = δ(An)(α(BC) − α(B)α(C)) and (β(BC) −
β(B)β(C))δ(An) = δ(B)(α(CAn) − α(C)α(An)). The continuity of α and
β at 0 implies that (β(0) − β(0)β(B))δ(C) = A(α(BC) − α(B)α(C)) and
(β(BC) − β(B)β(C))A = δ(B)(α(0) − α(C)α(0)). Using (iv) of Lemma 3.1,
we have

(1) A(α(BC)− α(B)α(C)) = 0,

(2) (β(BC)− β(B)β(C))A = 0

for each A ∈ S(δ) and B,C ∈ A. Similarly, using (ii) and (iii) of Lemma 3.1,
for each A ∈ S(δ), B,C ∈ A, λ, µ ∈ C, we get that

(3) A(α(λB + µC)− λα(B)− µα(C)) = 0,

(4) (β(λB + µC)− λβ(B)− µβ(C))A = 0.

Suppose that S(δ) = B(X) or S(δ) = K(X). Then it follows from (1),
(2), (3) and (4) that both α and β are algebraic homomorphisms, which is a
contradiction. Hence S(δ) = 0, and so, δ is continuous. □
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Theorem 3.4. Let X be a simple Banach space, δ an (α, β)-derivation from
B(X) into itself. Suppose that α, β : B(X) → B(X) are surjective and contin-
uous at 0. Then δ is continuous.

Proof. If at least one of α and β is not an algebraic homomorphism, then
Proposition 3.3 yields the continuity of δ. If both α and β are algebraic ho-
momorphisms, then they are bounded automorphisms of B(X). Theorem 3.2
implies that δ is continuous. □

Removing the continuity in above theorem, we have the following results.

Theorem 3.5. For a complex Banach space X and two mappings α, β on
B(X), assume that α and β are surjective and multiplicative and there are rank
one operators T0 and S0 such that α(T0) ̸= 0 and β(S0) ̸= 0. Then every
(α, β)-derivation from B(X) into itself is continuous.

Proof. It suffices to show that α and β are (bounded) automorphisms of B(X).
Assume that δ ̸= 0.

Since α and β are surjective and multiplicative, it is not difficult to show
that, for each λ ∈ C, there are scales f(λ) and g(λ) such that α(λI) = f(λ)I,
β(λI) = g(λ)I and α(I) = I, β(I) = I. Note that δ(I) = δ(I)α(I)+β(I)δ(I) =
2δ(I), which yields δ(I) = 0. Hence for λ ∈ C and T ∈ B(X), λδ(T ) =
δ(T · λI) = δ(T )α(λI) + β(T )δ(λI) = δ(T )α(λI) = f(λ)δ(T ), which implies
that f(λ) = λ, and thus, α(λI) = λI. Hence α is homogeneous. Similarly,
using λδ(T ) = δ(λI · T ), we can get that β is also homogeneous.

Now we show that α and β are injective.
Let T0 = ξ0⊗f0 be the rank one operator such that α(T0) ̸= 0. For each rank

one operator ξ ⊗ f , choose g0 ∈ X∗ and η0 ∈ X such that g0(ξ) = f(η0) = 1.
Then ξ0 ⊗ f0 = (ξ0 ⊗ g0)(ξ ⊗ f)(η0 ⊗ f0), which implies α(ξ ⊗ f) ̸= 0 for all
rank one operators ξ ⊗ f .

If α(T ) = 0, then T = 0. For, otherwise, there exists ξ ∈ X with Tξ ̸= 0.
For f0 ∈ X∗, f0 ̸= 0, we have Tξ⊗ f0 is a rank one operator, but α(Tξ⊗ f0) =
α(T )α(ξ ⊗ f0) = 0, which is a contradiction with above argument.

Next we show α is injective on the set of all rank one operators. Let R =
ξ0⊗f0 and S = η0⊗g0 be two arbitrary rank one operators with α(R) = α(S).
If R and S are linearly independent, and ξ0 and η0 are linearly dependent,
then f0 and g0 are linearly independent. Choosing ξ ∈ X with f0(ξ) = 1 and
g0(ξ) = 0, we have R(ξ ⊗ f0) = ξ0 ⊗ f0 and S(ξ ⊗ f0) = 0, which is impossible,
for 0 ̸= α(R(ξ ⊗ f0)) = α(S(ξ ⊗ f0)) = 0. If R and S are linearly independent,
and ξ0 and η0 are linearly independent, then we can choose h0 ∈ X∗ such that
h0(ξ0) = 0 and h0(η0) = 1. Hence (ξ0 ⊗ h0)R = (ξ0 ⊗ h0)(ξ0 ⊗ f0) = 0 and
(ξ0 ⊗ h0)S = (ξ0 ⊗ h0)(η0 ⊗ g0) = ξ0 ⊗ g0 ̸= 0. So 0 = α((ξ0 ⊗ h0)R) =
α((ξ0 ⊗ h0)S) ̸= 0, which is a contradiction. Hence R and S are linearly
dependent. The homogeneity of α yields R = S.

If α(T ) = α(S) for T, S ∈ B(X), then for each nonzero vectors ξ ∈ X and
f ∈ X∗, we have α(Sξ ⊗ f) = α(Tξ ⊗ f). Obviously, Sξ = 0 if and only if
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Tξ = 0. If Sξ ̸= 0, using the injectivity of α on the set of all rank one operators
and the arbitrariness of f , we have Sξ = Tξ. Hence S = T . We have shown
that α is injective. Similarly, we can show the injectivity of β.

Hence α and β are multiplicative bijections on B(X). By the celebrated
result of Martindale in [9], α and β are additive. Consequently, α and β are
surjective algebraic homomorphisms, hence are automorphisms on B(X). By
Theorem 3.2, δ is continuous. □

4. The C∗-algebra case

In this section we study the continuity of (α, β)-derivations of C∗-algebras
into their Banach modules. Inspiring the proof of the related results on the
ordinary derivations in [13], we have the following Theorem 4.4. We start with
some lemmas which can be found in Ex 4.6.39, Ex 4.6.13 and Ex 4.6.20 in [6]
(see also Lemma 1 and the proof of Theorem 3 in [13]).

Lemma 4.1 ([6, 13]). Let J be a closed two-sided ideal in a unital C∗-algebra
A, B ∈ J a positive element with ∥B∥ ≤ 1, A ∈ J with AA∗ ≤ B4. Then
A = BC for some C in J with ∥C∥ ≤ 1.

Lemma 4.2 ([6, 13]). Suppose that D is an infinite dimensional unital C∗-
algebra. Then there is an infinite sequence {A1, A2, . . .} of nonzero positive
elements in D such that AjAk = 0 for j ̸= k.

Lemma 4.3 ([6, 13]). Suppose that A and B are unital C∗-algebras and φ is
a ∗-homomorphism from A onto B. For each sequence {B1, B2, . . .} of positive
elements of B such that BjBk = 0 when j ̸= k, there is a sequence {A1, A2, . . .}
of positive elements of A such that AjAk = 0 when j ̸= k and φ(Aj) = Bj for
each j = 1, 2, . . ..

Theorem 4.4. Let A be a unital C∗-algebra, let B be a unital Banach algebra
containing A as a unital Banach subalgebra, and let M be a Banach B-module.
Suppose that α, β : A → B are continuous at 0. Then every (α, β)-derivation
δ from A into M is continuous.

Proof. For each A in A, we define the mappings LA, SA, γA, σA : A → M by

LA(T ) = δ(AT ), SA(T ) = β(A)δ(T ), γA(T ) = δ(A)α(T ), σA(T ) = β(T )δ(A)

for each T in A. Since δ is linear, we have LA and SA are linear, hence
γA = LA − SA is linear. It follows from (iii) of Lemma 3.1 that σA is linear.
The continuity of α and β at 0 implies the continuity of γA and σA at 0,
hence at every T ∈ A. Hence γA and σA are bounded. Let J = {A ∈ A :
LA is bounded}. Obviously, 0 ∈ J , J is a subspace of A, and J = {A ∈ A :
SA is bounded}. Firstly, we claim that J is a norm closed two-sided ideal of
A.

For each J in J and A in A, since LJA is the composition of the bounded
mapping LJ and the (bounded) multiplication on the left by A: T → AT from
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A into itself, we have that JA is in J ; on the other hand, by Lemma 3.1(iv),
we have

SAJ(T ) = β(AJ)δ(T ) = β(A)SJ(T ) + γA(JT )− γA(J)α(T )

for each T ∈ A. Hence SAJ is continuous at 0, which yields that SAJ is
continuous. Hence AJ ∈ J , so J is a two-sided ideal of A.

Let {An} be a sequence in J with An → A ∈ A. For each T in A, not-
ing that σT is bounded, we have limn→∞ SAn(T ) = limn→∞ β(An)δ(T ) =
limn→∞ σT (An) = σT (A) = β(A)δ(T ) = SA(T ). Since {SAn} is a sequence in
B(A,M), the set of all the bounded linear mappings from A into M, using
the principle of uniform boundedness, we have SA is also bounded, hence A
belongs to J . We have established the claim.

Now we show that the restriction δ|J to J of δ is bounded. For otherwise,
choose a sequence A1, A2, . . . in J such that for each n, ∥An∥2 ≤ 1

2n and

∥δ(An)∥ ≥ n. Let B = (
∑∞

n=1 AnA
∗
n)

1
4 . Then B is a positive element in J with

∥B∥ ≤ 1 and AnA
∗
n ≤ B4 for each n. By Lemma 4.1, for each n, there exists

Cn in J such that ∥Cn∥ ≤ 1 and An = BCn. Hence ∥LB(Cn)∥ = ∥δ(An)∥ ≥ n
for each n, which contradicts the continuity of LB . This proves that δ|J is
bounded.

Let π : A → A/J be the canonical quotient mapping which is a surjective
∗-homomorphism. We claim that A/J is finite dimensional. On the contrary,

using Lemma 4.2, we choose an infinite sequence {Ã1, Ã2, . . .} of nonzero posi-

tive elements in A/J such that ÃjÃk = 0 when j ̸= k. By Lemma 4.3, there is
an infinite sequence {A1, A2, . . .} of nonzero positive elements in A such that

AjAk = 0 when j ̸= k and π(Aj) = Ãj for each j. Since Ãj is nonzero in
A/J , we have that Aj , and hence, A2

j is not in J , which implies that LA2
j
is

unbounded. Consequently, we have constructed a sequence A1, A2, . . . of pos-
itive elements in A such that A2

j /∈ J and AjAk ̸= 0 when j ̸= k. Replacing
Aj by an appropriate scalar multiple, we may assume also that ∥Aj∥ ≤ 1 for
each j. Since LA2

j
is unbounded, there is Tj in A such that ∥Tj∥ ≤ 2−j and

∥LA2
j
(Tj)∥ = ∥δ(A2

jTj)∥ ≥ ∥γAj∥ + j. Let A =
∑∞

j=1 AjTj . Then A ∈ A,

∥A∥ ≤ 1 and AjA = A2
jTj . Hence, for each j = 1, 2, . . .,

∥σA∥ ≥ ∥σA(Aj)∥ = ∥β(Aj)δ(A)∥ = ∥δ(AjA)− δ(Aj)α(A)∥
= ∥δ(A2

jTj)− γAj (A)∥ ≥ ∥δ(A2
jTj)∥ − ∥γAj (A)∥

≥ ∥δ(A2
jTj)∥ − ∥γAj∥ ≥ j,

which is impossible. Hence A/J is finite dimensional.
Since δ|J is norm continuous and J has finite codimension in A, it follows

that δ is norm continuous. □

Remark. When A in above theorem is only a Banach algebra, we can also get
the closed two-sided ideal J of A. Using the closed graph theorem, we can
show that if J has a bounded left approximate identity, then the restriction
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δ|J of δ to J is bounded. Firstly, we recall the Cohen’s factorization theorem
([1], Corollary 12 in Chapter 1), which tells us if B is a Banach algebra with
a bounded left approximate identity, then for each sequence {An} in B with
An → 0, there exist A,Bn ∈ B with An = ABn, (n = 1, 2, . . .) and Bn →
0. Now we show the boundedness of δ|J . Let An ∈ J (n = 1, 2, . . .) with
An → 0 and δ(An) → J . It follows from the Cohen’s factorization theorem
that there exist A,Bn ∈ J with An = ABn, (n = 1, 2, . . .) and Bn → 0. Since
δ(An) = δ(A)α(Bn) + β(A)δ(Bn) for each n and A ∈ J , by Lemma 3.1(i),
the boundedness of SA and the continuity of α at 0 yield J = 0. Hence δ|J is
continuous.

Let S be a von Neumann algebra acting on a separable Hilbert space H, let
M be a dual normal S-module. If M∗ is the predual of M, we write ⟨M,ω⟩ in
place of M(ω) for each M ∈ M and ω ∈ M∗. Then M∗ is a Banach S-module
under the following module actions determined by

⟨M,ωA⟩ = ⟨AM,ω⟩, ⟨M,Aω⟩ = ⟨MA,ω⟩

for ω ∈ M∗, A ∈ S,M ∈ M. In [13], using the properties of the Mackey
topologies onM∗ and S, Ringrose proved that the mappings A → ωA, A → Aω
are continuous from the unit ball of S (with strong∗ topology) into M∗ (with
norm topology). Hence, for a C∗-subalgebra A of S and a pair of ultraweakly
and strong∗ continuous linear mappings α, β from A into S, the mappings
A → α(A)ω, A → ωβ(A) are strong∗-norm continuous from the unit ball of A
into M∗. We have the following corollary.

Corollary 4.5. Let S be a von Neumann algebra acting on a separable Hilbert
space H, and let A be a unital C∗-subalgebra of S, with the weak closure R.
Suppose that M is a dual normal S-module and α, β are two ultraweakly
and strong∗ continuous linear mappings from A into S. Then every (α, β)-
derivation δ from A into M is ultraweakly-weak∗ continuous, and extends to
an ultraweakly-weak∗ continuous (α, β)-derivation of R, where α and β are the
extension of α and β to R, respectively.

Proof. By Theorem 4.4, δ is norm continuous. To establish the ultraweak-
weak∗ continuity of δ, it suffices to show that, for each ω in M∗, the linear
functional φ : A → C, defined by φ(A) = ⟨δ(A), ω⟩ for each A ∈ A, is ultra-
weakly continuous (equivalently, show that φ is continuous on the unit ball of
A under the weak operator topology). By Lemma 7.1.3 in [6], we only need
to prove that the restriction of φ to A+

1 , the set of all positive elements in the
unit ball of A, is strongly continuous at 0.

Let {Tι} be a net converging strongly to 0 in A+
1 . Then {T 1/2

ι } converges
strongly, and hence under the strong∗ topology, to 0. Since α and β are ul-
traweakly and strong∗ continuous, by the previous argument of Corollary 4.5,
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both {∥α(T 1/2
ι )ω∥} and {∥ωβ(T 1/2

ι )∥} converge to 0. It follows that

|φ(Tι)| = ∥⟨δ(T 1/2
ι T

1/2
ι ), ω⟩∥

= ∥⟨δ(T 1/2
ι )α(T

1/2
ι ) + β(T

1/2
ι )δ(T

1/2
ι ), ω⟩∥

= ∥⟨δ(T 1/2
ι ), α(T

1/2
ι )ω + ωβ(T

1/2
ι )⟩∥

≤ ∥δ∥(∥α(T 1/2
ι )ω∥+ ∥ωβ(T 1/2

ι )∥) −→ 0.

Hence we have proved that δ is ultraweakly-weak∗ continuous. Since by Ka-
plansky density theorem, the unit ball of A is weakly dense in the unit ball of
R, and the unit ball M is weak∗ compact, we have that δ can extend without
increase in norm to an ultraweak-weak∗ continuous linear mapping, denoted
by δ, from R into M.

Now, we claim that δ is an (α, β)-derivation. For a given arbitrary element
ω ∈ M∗, define a bilinear form Fω : R × R → C by Fω(A,B) = ⟨δ(AB) −
δ(A)α(B) − β(A)δ(B), ω⟩ for each pair A, B ∈ R. Clearly, Fω(A,B) = 0
when A and B are in A. For self-adjoint operators A,B ∈ R, by Kaplansky
density theorem, we choose self-adjoint element {Aι} and {Bι} in A which
converges strongly to A and B, respectively and ∥Aι∥ ≤ ∥A∥, ∥Bι∥ ≤ ∥B∥
for each ι. Also since the joint multiplication is strongly continuous on the
bounded sets of self-adjoint elements, we have {AιBι} converges strongly to
AB, and hence Fω(A,B) = limι Fω(Aι, Bι) = 0. Since ω is arbitrary, we have
δ(AB) − δ(A)α(B) − β(A)δ(B) = 0 for arbitrary self-adjoint operators, and
hence for any elements, in R. Consequently, δ is an (α, β) derivation. □

The following corollary is a direct result of Corollary 4.5.

Corollary 4.6. Let R and S be von Neumann algebras acting on a separable
Hilbert space H, R ⊆ S and let M be a dual normal S-module. For two
given ultraweakly and strong∗ continuous linear mappings α, β : R → S, every
(α, β)-derivation δ : R → M is ultraweakly-weak∗ continuous.

Corollary 4.7. Let S be a von Neumann algebra acting on a separable Hilbert
space H, A be an ultraweakly closed unital subalgebra of S. Suppose that M is
a dual normal S-module, α, β : A → S are ultraweakly and strong∗ continuous
linear mappings. Then for each (α, β)-derivation δ : A → M, there is a central
projection P in A∩A∗ such that (A∩A∗)(I−P ) is finite dimensional and the
mapping A → δ(PA) from A into M is norm continuous.

Proof. Let R = A ∩ A∗. Then R is a von Neumann algebra. As in the proof
in Theorem 4.4, set J = {A ∈ R : LA is bounded from A into M}. By the
same argument, one can see that J is a two-sided ideal of R. Now we show
that J is ultraweakly closed. Let {Aι} be a net of elements in J converging
ultraweakly to A. Since J is a two-sided ideal of a von Neumann algebra, it is
selfadjoint, for let J ∈ J and J = W |J | be its polar decomposition, we have
W ∈ R and J∗ = |J |W ∗ = WJW ∗ ∈ J . Using Kaplansky density theorem,
we assume that ∥Aι∥ ≤ ∥A∥ for each ι. By Corollary 4.6, the restriction δ|R of
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δ to R is bounded and ultraweakly-weak∗ continuous. Hence, for each T ∈ A,
we have LA(T ) = δ(AT ) = δ(A)α(T ) + β(A)δ(T ) = weak∗- limι δ(Aι)α(T ) +
β(Aι)δ(T ) = weak∗- limι δ(AιT ) = weak∗- limι LAι(T ); and moreover, for each
ι, we have

∥LAι(T )∥ = ∥δ(Aι)α(T ) + β(Aι)δ(T )∥
≤ ∥δ|R∥∥Aι∥∥α∥∥T∥+ ∥β∥∥Aι∥∥δ(T )∥
≤ ∥δ|R∥∥α∥∥A∥∥T∥+ ∥β∥∥A∥∥δ(T )∥.

Using the principle of uniform boundedness, we have {∥LAι∥} is bounded. So
LA, as the pointwise limit of the net {LAι} of continuous mappings from A
into M, is continuous, and thus A ∈ J . Hence J is an ultraweakly two-sided
ideal of R, so there is a unique central projection P in R such that J = RP .

Now we claim that R(I − P ) is finite dimensional. For, otherwise, there is
a sequence of nontrivial pairwise orthogonal projections {Qn} in R with sum
I − P . Since for each n, the mapping LQn is unbounded, there exists An in
A such that ∥An∥ ≤ 2−n and ∥δ(QnAn)∥ > 2n. Let A =

∑∞
n=1 QnAn. Then

∥A∥ ≤ 1 and QnA = QnAn for each n. Consequently, 2n ≤ ∥δ(QnAn)∥ =
∥δ(QnA)∥ ≤ ∥δ|R∥∥α(A)∥+ ∥β∥∥δ(A)∥ for each n, which is impossible. Hence
R(I − P ) is finite dimensional. □

Remark. Applying Corollary 4.7 to δ∗(A) = δ(A∗)∗ on A∗, we have that there is
a central projection Q in A∩A∗ such that (A∩A∗)(I−Q) is finite dimensional
and the mapping A → δ(AQ) from A into M is norm continuous.

Corollary 4.8. Suppose that A is a CSL algebra acting on a separable Hilbert
space H, i.e., A is a reflexive algebra whose lattice Lat(A) of invariant pro-
jections is commutative. If α, β : A → B(H) are ultraweakly and strong∗

continuous linear mappings, then every (α, β)-derivation from A into B(H) is
bounded.

Proof. The proof is the same as that of Corollary 2.3 in [2], we describe it briefly.
Let L = Lat(A) and R = A∩A∗. Then R = L′ with center L′′. By Corollary
4.7 and its remark, there are projections P and Q in L′′ such that RP⊥ and
RQ⊥ are finite dimensional, and the mappings LP : A ∈ A → δ(PA) ∈ B(H)

and RQ : A ∈ A → δ(AQ) ∈ B(H) are continuous. Let P⊥ =
∑k

i=1 Pi and

Q⊥ =
∑l

j=1 Qi be the sum of minimal projections in L′′, each of which is

finite rank, for RP⊥ =
∑k

i=1 ⊕B(PiH) and RQ⊥ =
∑l

j=1 ⊕B(QjH) are finite

dimensional. Hence for each A ∈ A, we have δ(A) = δ(PA) + δ(P⊥AQ) +∑
i,j δ(PiAQj). Since PiAQj is finite dimensional and LP , RQ are continuous,

we have δ is continuous. □
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