J. Korean Math. Soc. ${\bf 48}$ (2011), No. 4, pp. 823–835 DOI 10.4134/JKMS.2011.48.4.823

CONTINUITY OF (α, β) -DERIVATIONS OF OPERATOR ALGEBRAS

Chengjun Hou and Qing Meng

ABSTRACT. We investigate the continuity of (α, β) -derivations on $B(\mathfrak{X})$ or C^* -algebras. We give some sufficient conditions on which (α, β) derivations on $B(\mathfrak{X})$ are continuous and show that each (α, β) -derivation from a unital C^* -algebra into its a Banach module is continuous when α and β are continuous at zero. As an application, we also study the ultraweak continuity of (α, β) -derivations on von Neumann algebras.

1. Introduction

Let \mathcal{B} be a complex algebra with a subalgebra \mathcal{A} , let α and β be two mappings from \mathcal{A} into \mathcal{B} , let \mathcal{M} be a \mathcal{B} -module and hence an \mathcal{A} -module. A linear mapping δ from \mathcal{A} into \mathcal{M} is called an (α, β) -derivation, if $\delta(AB) = \delta(A)\alpha(B) + \beta(A)\delta(B)$ holds for all $A, B \in \mathcal{A}$; moreover, δ is called inner, if there exists $M_0 \in \mathcal{M}$ such that $\delta(A) = M_0\alpha(A) - \beta(A)M_0$ for each $A \in \mathcal{A}$. An (α, α) -derivation is called briefly an α -derivation. Clearly, an *id*-derivation is an ordinary linear derivation, where *id* denotes the embedding map from \mathcal{A} into \mathcal{B} , and every endomorphism α on \mathcal{A} is an $\frac{\alpha}{2}$ -derivation on \mathcal{A} . Note that in our definition of an (α, β) -derivation, no extra assumptions on α and β , such as linearity, are required. The purpose of this note is to investigate the continuity of (α, β) derivations from Banach algebras into their Banach modules.

In 1958, Kaplansky conjectured that every derivation on a C^* -algebra or a semisimple Banach algebra is continuous ([7, 8]). Sakai confirmed Kaplansky's conjecture for the C^* -algebra case in [14], and from this, Kadison deduced the ultraweak continuity of derivations when the C^* -algebras are represented on Hilbert spaces ([5]). In [13], Ringrose generalized these results to the derivations from C^* -algebras into their Banach modules. The conjecture on the continuity of derivations on semisimple Banach algebras by Kaplansky was confirmed by Johnson and Sinclair in [4]. For the detail on automatic continuity of derivations of Banach algebras, we refer to [3, 15].

O2011 The Korean Mathematical Society

Received April 15, 2010; Revised July 9, 2010.

²⁰¹⁰ Mathematics Subject Classification. 46H40, 46L57.

Key words and phrases. automatic continuity, (α, β) -derivation, Banach algebra, C*-algebra.

On the continuity of (α, β) -derivations on C^* -algebras, M. Mirzavazibri and S. Moslehian proved that each $*{-}(\alpha, \beta)$ -derivation from a C^* -algebra \mathcal{A} acting on a Hilbert space \mathfrak{H} into $B(\mathfrak{H})$ is continuous under the assumption that α and β are $*{-}$ linear continuous mappings from \mathcal{A} into $B(\mathfrak{H})$ ([10, 11, 12]).

For an (α, β) -derivation δ from a Banach algebra \mathcal{A} into a Banach \mathcal{A} -module \mathcal{M} , if both α and β are bounded algebraic homomorphisms from \mathcal{A} into itself, then \mathcal{M} , equipped with the \mathcal{A} -module actions defined by $A \cdot M = \beta(A)M$, $M \cdot A = M\alpha(A)$, is also a Banach \mathcal{A} -module, denoted by $\mathcal{M}_{\alpha,\beta}$, and δ is indeed an ordinary derivation from \mathcal{A} into $\mathcal{M}_{\alpha,\beta}$. Hence it is interesting to study the continuity of an (α, β) -derivation when at least one of α and β is not an algebraic homomorphism.

This note is organized as follows. In Section 2 we give two examples of continuous (α, β) -derivations for two nonlinear and non-continuous mappings α and β . In Section 3 we give some sufficient conditions on which an (α, β) -derivation on $B(\mathfrak{X})$, the algebra of all bounded linear operators on a complex Banach space \mathfrak{X} , is continuous. In particular, we show that if \mathfrak{X} is simple and α, β are surjective and continuous at zero, then each (α, β) -derivation on $B(\mathfrak{X})$ is continuous. In Section 4, using a similar argument to the proof in [13], we show that every (α, β) -derivation of a unital C^* -algebra into its a Banach module is continuous if α, β are continuous at zero, which generalizes the main results in [10]. As corollaries, we also get the ultraweak continuity of (α, β) -derivations of von Neumann algebras when the ultraweak continuity and linearity on α and β are required.

For a complex Banach space \mathfrak{X} , we denote by \mathfrak{X}^* , $B(\mathfrak{X})$ and $K(\mathfrak{X})$, the Banach dual space of \mathfrak{X} , the algebra of all bounded linear operators on \mathfrak{X} and the ideal of all compact operators in $B(\mathfrak{X})$, respectively. For nonzero vectors $\xi \in \mathfrak{X}$ and $f \in \mathfrak{X}^*$, we denote by $\xi \otimes f$ the rank operator defined by $(\xi \otimes f)(\eta) = f(\eta)\xi$ for each $\eta \in \mathfrak{X}$. Sometimes we write $\langle \eta, f \rangle$ in place of $f(\eta)$. Let $F_1(\mathfrak{X})$ denote the set of all rank one operators on \mathfrak{X} . Obviously, $A(\xi \otimes f)B = (A\xi) \otimes (B'f)$ for all $A, B \in B(\mathfrak{X}), \xi \in \mathfrak{X}, f \in \mathfrak{X}^*$, where B' denotes the transpose of the bounded linear operator B, defined by $\langle \xi, B'f \rangle = \langle B\xi, f \rangle$ for each $\xi \in \mathfrak{X}$ and $f \in \mathfrak{X}^*$.

2. Reduction and examples

Let \mathcal{A} be a complex Banach algebra without identity. We take the direct sum $\mathcal{A} \oplus \mathbb{C}$ as a linear space \mathcal{A}_I . By a well-known fact, \mathcal{A}_I , endowed with a Banach algebra structure, is a unital Banach algebra. In addition, if \mathcal{A} is a C^* algebra, then there exists a (unique) norm on \mathcal{A}_I which makes \mathcal{A}_I be a unital C^* -algebra. If we identify each $A \in \mathcal{A}$ with $(A, 0) \in \mathcal{A}_I$, then \mathcal{A} is a closed two-sided ideal of \mathcal{A}_I ([6]). We write (A, λ) as $A + \lambda I$ for each $(A, \lambda) \in \mathcal{A}_I$. If \mathcal{M} is a Banach \mathcal{A} -module, then it is a unital Banach \mathcal{A}_I -module under the module action given by $(A + \lambda)M = AM + \lambda M$ and $M(A + \lambda) = MA + \lambda M$ for every $A + \lambda \in \mathcal{A}_I$ and $M \in \mathcal{M}$. For a given mapping $\sigma : \mathcal{A} \to \mathcal{A}$, we can obtain its extension σ_I to \mathcal{A}_I by $\sigma_I(A + \lambda) = \sigma(A) + \lambda$ for each $A + \lambda \in \mathcal{A}_I$. Then σ_I is linear if and only if so is σ , σ_I preserves the identity of \mathcal{A}_I if and only if $\sigma(0) = 0$, and when \mathcal{A} is a C^* -algebra, σ_I is a *-mapping if and only if so is σ . In both Banach algebra and C^* -algebra cases, σ_I is continuous at 0 if and only if so is σ .

For an (α, β) -derivation δ from \mathcal{A} into \mathcal{M} , since δ is linear, we have $\delta(0) = 0$. Using the equation $0 = \delta(0) = \delta(A0) = \delta(0A)$, we have $\delta(A)\alpha(0) = 0$ and $\beta(0)\delta(A) = 0$ for each $A \in \mathcal{A}$. Hence if let $\alpha_0(A) = \alpha(A) - \alpha(0)$ and $\beta_0(A) = \beta(A) - \beta(0)$ for each $A \in \mathcal{A}$, then δ is a (α_0, β_0) -derivation. So, for an (α, β) -derivation δ , we sometimes can assume that $\alpha(0) = 0$ and $\beta(0) = 0$. Define the mapping δ_I from \mathcal{A}_I into \mathcal{M} by $\delta_I(A, \lambda) = \delta(A)$ for each $(A, \lambda) \in \mathcal{A}_I$. Then δ_I is an (α_I, β_I) -derivation from \mathcal{A}_I into \mathcal{M} , and $\delta_I(0, 1) = \delta(0) = 0$, $\alpha_I(0, 1) = (0, 1)$ and $\beta_I(0, 1) = (0, 1)$ by the assumptions that $\alpha(0) = 0$ and $\beta(0) = 0$. Obviously, δ is bounded if and only if so is δ_I .

Hence, to obtain the continuity of an (α, β) -derivation δ of a Banach algebra \mathcal{A} into its a Banach module \mathcal{M} , sometimes we can assume that \mathcal{A} is unital, \mathcal{M} is a unital \mathcal{A} -module, $\delta(1) = 0$, $\alpha(0) = \beta(0) = 0$ and $\alpha(1) = \beta(1) = 1$, where 1 is the identity of \mathcal{A} .

The following examples yield continuous (α, β) -derivations without the assumption of linearity and continuity of α and β .

Example 2.1. Let \mathcal{A} be a von Neumann algebra acting on a separable Hilbert space $\mathfrak{H}, \mathcal{A} \neq B(\mathfrak{H})$. Let α_0 and β_0 be bounded homomorphisms of \mathcal{A} into itself, $f_0, g_0 : \mathcal{A} \to \mathbb{C}$ be two functionals without linearity and continuity, T_0 and S_0 be nonzero operators in \mathcal{A}' with $T_0S_0 = S_0T_0 = 0$. Define the mappings α, β and δ from \mathcal{A} into $B(\mathfrak{H})$ by

 $\alpha(A) = \alpha_0(A) + f_0(A)S_0, \ \beta(A) = \beta_0(A) + g_0(A)S_0, \ \delta(A) = T_0\alpha(A) - \beta(A)T_0$

for each $A \in \mathcal{A}$. Then α and β are neither continuous nor linear, and δ is an (α, β) -derivation from \mathcal{A} into $B(\mathfrak{H})$. By calculation, we have $\delta(A) = T_0 \alpha_0(A) - \beta_0(A)T_0$ for each $A \in \mathcal{A}$, hence δ is continuous.

Example 2.2. Let \mathfrak{H} be a separable infinite dimensional Hilbert space, $V \in B(\mathfrak{H})$ a partial isometry with $V^*V = I$, $VV^* = P \neq I$. Let $T_0 \in B(\mathfrak{H})$ be a selfadjoint operator with $T_0P = 0$, let $f_0 : B(\mathfrak{H}) \to \{V^*\}'$ be a mapping without linearity and continuity, (e.g., f is an nonlinear and non-continuous functional on $B(\mathfrak{H})$), where $\{V^*\}'$ is the commutant of $\{V^*\}$ in $B(\mathfrak{H})$. Define the mappings $\alpha, \delta, : B(\mathfrak{H}) \to B(\mathfrak{H})$ by $\alpha(A) = \frac{1}{2}(VAV^* + f_0(A)T_0)$ and $\delta(A) = VAV^*$ for each $A \in B(\mathfrak{H})$. Then α is neither linear nor continuous on $B(\mathfrak{H})$, but δ is a continuous α -derivation.

3. The $B(\mathfrak{X})$ case

In the following lemma, we list some properties given in [10] of an (α, β) -derivation.

Lemma 3.1 ([10]). Let \mathcal{B} be a complex algebra with a subalgebra \mathcal{A} and let \mathcal{M} be a \mathcal{B} -module. Let $\alpha, \beta : \mathcal{A} \to \mathcal{B}$ be two mappings. If δ is an (α, β) -derivation from \mathcal{A} into \mathcal{M} , then, for each $\lambda, \mu \in \mathbb{C}$ and $A, B, C \in \mathcal{A}$, the following equations hold:

- (i) $\delta(A)\alpha(0) = \beta(0)\delta(A) = 0;$
- (ii) $\delta(A)(\alpha(\lambda B + \mu C) \lambda \alpha(B) \mu \alpha(C)) = 0;$
- (iii) $(\beta(\lambda A + \mu B) \lambda\beta(A) \mu\beta(B))\delta(C) = 0;$
- (iv) $(\beta(AB) \beta(A)\beta(B))\delta(C) = \delta(A)(\alpha(BC) \alpha(B)\alpha(C))$. In particular, $(\beta(0) - \beta(0)\beta(B))\delta(C) = 0 = \delta(A)(\alpha(0) - \alpha(B)\alpha(0))$.

Proof. By the equation $0 = \delta(0) = \delta(A0) = \delta(0A)$, we can obtain (i). Using the linearity and the multiplicative rule of δ to expand the left of the following equations: $\delta(A(\lambda B + \mu C)) - \lambda \delta(AB) - \mu \delta(AC) = 0$, $\delta((\lambda A + \mu B)C) - \lambda \delta(AC) - \mu \delta(BC) = 0$, $\delta((AB)C) - \delta(A(BC)) = 0$, we can get (ii), (iii) and (iv).

Theorem 3.2. Let \mathfrak{X} be a complex Banach space, α and β be mappings from $B(\mathfrak{X})$ into itself. Let $\delta : B(\mathfrak{X}) \to B(\mathfrak{X})$ be an (α, β) -derivation. Suppose that α and β satisfy one of the following conditions:

- (i) α is an automorphism, β is continuous at 0 and the set {β(T) : T ∈ F₁(𝔅)} separates the points of 𝔅 in the sense that, for each pair ξ, η ∈ 𝔅 with ξ ≠ η, there is a rank one operator T such that β(T)ξ ≠ β(T)η, equivalently, the set {β(T) : T ∈ F₁(𝔅)} has no nonzero right annihilators in B(𝔅).
- (ii) β is an automorphism, α is continuous at 0 and the set $\{\alpha(T) : T \in F_1(\mathfrak{X})\}$ has no nonzero left annihilators in $B(\mathfrak{X})$.
- (iii) α and β are continuous at 0, $span\{\alpha(T)\xi : T \in F_1(\mathfrak{X}), \xi \in \mathfrak{X}\}$ is dense in \mathfrak{X} and there is a rank one S such that $\beta(S)$ is injective.

Then δ is continuous. Moreover, if (i), or when \mathfrak{X} is reflexive and (ii), holds, δ is inner.

Proof. In order to obtain the continuity of δ , we use the closed graph theorem. Let $A_n \in B(\mathfrak{X}), n = 1, 2, ...,$ with $A_n \to 0$ and $\delta(A_n) \to A$. For every $\xi \otimes f, \eta \otimes g \in F_1(\mathfrak{X})$ and n = 1, 2, ..., we have

$$\begin{aligned} &f(A_n\eta)\delta(\xi\otimes g)\\ &=\delta(\xi\otimes f\cdot A_n\cdot\eta\otimes g)\\ &=\delta(\xi\otimes f)\alpha(A_n\eta\otimes g)+\beta(\xi\otimes f)\delta(A_n)\alpha(\eta\otimes g)+\beta(\xi\otimes f)\beta(A_n)\delta(\eta\otimes g).\end{aligned}$$

If α and β are continuous at 0, letting $n \to \infty$, we have

$$\delta(\xi \otimes f)\alpha(0) + \beta(\xi \otimes f)A\alpha(\eta \otimes g) + \beta(\xi \otimes f)\beta(0)\delta(\eta \otimes g) = 0.$$

Using Lemma 3.1, we have

$$\beta(\xi \otimes f) A \alpha(\eta \otimes g) = 0$$

for every $\xi \otimes f, \eta \otimes g \in F_1(\mathfrak{X})$.

If (i) holds, then for each $\eta \otimes g \in F_1(\mathfrak{X})$, we have $A\alpha(\eta \otimes g) = 0$. Since α is an automorphism, it is inner, i.e., there is an invertible bounded linear operator $T_0 \in B(\mathfrak{X})$ such that $\alpha(T) = T_0 T T_0^{-1}$ for each $T \in B(\mathfrak{X})$. So $(AT_0\eta) \otimes g = 0$ for all $\eta \in \mathfrak{X}$ and $g \in \mathfrak{X}^*$. Hence A = 0. Consequently, δ is continuous.

In this case, we can show that δ is inner. Choose $\xi_0 \in \mathfrak{X}$ and $f_0 \in \mathfrak{X}^*$ such that $f_0(\xi_0) = 1$, and define the mapping $A_0 : \mathfrak{X} \to \mathfrak{X}$ by $A_0\xi = \delta(T_0^{-1}\xi \otimes f_0)T_0\xi_0$ for each $\xi \in \mathfrak{X}$. Obviously, A_0 is linear and bounded. For each $T \in B(\mathfrak{X})$ and $\xi \in \mathfrak{X}$, we have

$$\delta((T\xi) \otimes f_0) = \delta(T(\xi \otimes f_0)) = \delta(T)\alpha(\xi \otimes f_0) + \beta(T)\delta(\xi \otimes f_0) = \delta(T)T_0(\xi \otimes f_0)T_0^{-1} + \beta(T)\delta(\xi \otimes f_0).$$

Multiplying by the operator T_0 , we have

$$\delta((T\xi) \otimes f_0)T_0 = \delta(T)T_0(\xi \otimes f_0) + \beta(T)\delta(\xi \otimes f_0)T_0.$$

Applying mappings in two sides of the equation to ξ_0 , we get $A_0(T_0T\xi) = \delta(T)T_0\xi + \beta(T)A_0(T_0\xi)$. Since ξ is arbitrary, we have $A_0T_0T = \delta(T)T_0 + \beta(T)A_0T_0$, and hence $\delta(T) = A_0\alpha(T) - \beta(T)A_0$ for each $T \in B(\mathfrak{X})$. So δ is inner.

If (ii) holds, then by the equation $\beta(\xi \otimes f)A\alpha(\eta \otimes g) = 0$, we have $\beta(\xi \otimes f)A = 0$. Since β is an automorphism, there is an invertible bounded linear operator $S_0 \in B(\mathfrak{X})$ such that $\beta(T) = S_0TS_0^{-1}$ for each $T \in B(\mathfrak{X})$. So $(\xi \otimes f)S_0^{-1}A = 0$ for all $\xi \in \mathfrak{X}$ and $f \in \mathfrak{X}^*$. Hence A = 0, so δ is continuous.

In this case, choose $\xi_0 \in \mathfrak{X}$ and $f_0 \in \mathfrak{X}^*$ such that $f_0(\xi_0) = 1$. We define the mapping $B_0 : \mathfrak{X} \to \mathfrak{X}$ by

$$\langle B_0\xi, f \rangle = \langle S_0^{-1}\delta((\xi_0 \otimes f)S_0)\xi, f_0 \rangle, \ \xi \in \mathfrak{X}, f \in \mathfrak{X}^*.$$

Suppose that \mathfrak{X} is reflexive. Then B_0 is well-defined. The continuity and linearity of δ imply the continuity and linearity of B_0 . For each $\xi \in \mathfrak{X}$, $f \in \mathfrak{X}^*$ and $T \in B(\mathfrak{X})$, we have

$$\langle (\beta(T)B_0 - B_0\alpha(T))\xi, f \rangle$$

$$= \langle B_0\xi, \beta(T)'f \rangle - \langle B_0\alpha(T)\xi, f \rangle$$

$$= \langle S_0^{-1}\delta((\xi_0 \otimes \beta(T)'f)S_0)\xi, f_0 \rangle - \langle S_0^{-1}\delta((\xi_0 \otimes f)S_0)\alpha(T)\xi, f_0 \rangle$$

$$= \langle S_0^{-1}\delta((\xi_0 \otimes f)\beta(T)S_0)\xi, f_0 \rangle - \langle S_0^{-1}\delta((\xi_0 \otimes f)S_0)\alpha(T)\xi, f_0 \rangle$$

$$= \langle S_0^{-1}\delta((\xi_0 \otimes f)S_0T)\xi, f_0 \rangle - \langle S_0^{-1}\delta((\xi_0 \otimes f)S_0)\alpha(T)\xi, f_0 \rangle$$

$$= \langle S_0^{-1}\beta((\xi_0 \otimes f)S_0)\delta(T)\xi, f_0 \rangle$$

$$= \langle (\xi_0 \otimes f)\delta(T)\xi, f_0 \rangle$$

$$= \langle \delta(T)\xi, f \rangle.$$

Hence $\delta(T) = \beta(T)B_0 - B_0\alpha(T)$ for each $T \in B(\mathfrak{X})$, and so, δ is inner. Obviously, if (iii) holds, then A = 0, which yields the continuity of δ .

827

For a linear mapping T from a Banach space \mathfrak{E} into a Banach space \mathfrak{F} , the separating space $\mathfrak{S}(T)$ is defined to be the set of elements ξ in \mathfrak{F} such that

there is a sequence $\{\xi_n\}$ in \mathfrak{E} with $\xi_n \to 0$ in \mathfrak{E} and $T(\xi_n) \to \xi$ in \mathfrak{F} . Clearly, $\mathfrak{S}(T) = \bigcap_{n=1}^{\infty} \overline{\{T(\eta) : \|\eta\| < \frac{1}{n}\}}$, hence is a closed linear subspace of \mathfrak{F} , and by the closed graph theorem, T is continuous if and only if $\mathfrak{S}(T) = \{0\}$.

Recall that a Banach space \mathfrak{X} is called simple, if $B(\mathfrak{X})$ has a unique nontrivial norm-closed two-sided ideal. For example, l^p $(1 \leq p < \infty)$, c_0 and a separable infinite dimensional Hilbert space \mathfrak{H} are simple. In this case, the norm closure of all the finite rank operators is the ideal of compact operators, which is wot-dense in $B(\mathfrak{X})$ and is the unique nontrivial norm-closed two-sided ideal of $B(\mathfrak{X})$.

Proposition 3.3. Suppose that \mathfrak{X} is a simple complex Banach space, \mathcal{A} is a unital norm closed subalgebra of $B(\mathfrak{X})$, $\alpha, \beta : \mathcal{A} \to B(\mathfrak{X})$ are surjective and continuous at 0. If at least one of α and β is not an algebraic homomorphism, then every (α, β) -derivation δ from \mathcal{A} into $B(\mathfrak{X})$ is automatically continuous.

Proof. We first show that $\mathfrak{S}(\delta)$ is a closed two-sided ideal of $B(\mathfrak{X})$. For arbitrary $A \in \mathfrak{S}(\delta)$ and $B \in B(\mathfrak{X})$, there is a sequence $\{A_n\}$ in \mathcal{A} with $A_n \to 0$ and $\delta(A_n) \to A$. Since α and β are surjective, there are $S, T \in \mathcal{A}$ such that $B = \alpha(S) = \beta(T)$. Hence $TA_n \to 0, A_nS \to 0$. Also since α and β are continuous at 0, using Lemma 3.1, we have $\delta(TA_n) = \delta(T)\alpha(A_n) + \beta(T)\delta(A_n) \to \delta(T)\alpha(0) + BA = BA$ and $\delta(A_nS) = \delta(A_n)\alpha(S) + \beta(A_n)\delta(S) \to AB + \beta(0)\delta(S) = AB$. Hence $AB, BA \in \mathfrak{S}(\delta)$. So $\mathfrak{S}(\delta)$ is a closed two-sided ideal of $B(\mathfrak{X})$. Since \mathfrak{X} is simple, we have $\mathfrak{S}(\delta) = 0, B(\mathfrak{X})$, or $K(\mathfrak{X})$.

For an arbitrary $A \in \mathfrak{S}(\delta)$, let $\{A_n\}$ be a sequence in \mathcal{A} with $A_n \to 0$ and $\delta(A_n) \to A$. For all pairs $B, C \in \mathcal{A}$, using (iv) of Lemma 3.1, we have $(\beta(A_nB) - \beta(A_n)\beta(B))\delta(C) = \delta(A_n)(\alpha(BC) - \alpha(B)\alpha(C))$ and $(\beta(BC) - \beta(B)\beta(C))\delta(A_n) = \delta(B)(\alpha(CA_n) - \alpha(C)\alpha(A_n))$. The continuity of α and β at 0 implies that $(\beta(0) - \beta(0)\beta(B))\delta(C) = A(\alpha(BC) - \alpha(B)\alpha(C))$ and $(\beta(BC) - \beta(B)\beta(C))A = \delta(B)(\alpha(0) - \alpha(C)\alpha(0))$. Using (iv) of Lemma 3.1, we have

(1)
$$A(\alpha(BC) - \alpha(B)\alpha(C)) = 0,$$

(2)
$$(\beta(BC) - \beta(B)\beta(C))A = 0$$

for each $A \in \mathfrak{S}(\delta)$ and $B, C \in \mathcal{A}$. Similarly, using (ii) and (iii) of Lemma 3.1, for each $A \in \mathfrak{S}(\delta)$, $B, C \in \mathcal{A}$, $\lambda, \mu \in \mathbb{C}$, we get that

(3)
$$A(\alpha(\lambda B + \mu C) - \lambda \alpha(B) - \mu \alpha(C)) = 0,$$

(4)
$$(\beta(\lambda B + \mu C) - \lambda\beta(B) - \mu\beta(C))A = 0.$$

Suppose that $\mathfrak{S}(\delta) = B(\mathfrak{X})$ or $\mathfrak{S}(\delta) = K(\mathfrak{X})$. Then it follows from (1), (2), (3) and (4) that both α and β are algebraic homomorphisms, which is a contradiction. Hence $\mathfrak{S}(\delta) = 0$, and so, δ is continuous.

Theorem 3.4. Let \mathfrak{X} be a simple Banach space, δ an (α, β) -derivation from $B(\mathfrak{X})$ into itself. Suppose that $\alpha, \beta : B(\mathfrak{X}) \to B(\mathfrak{X})$ are surjective and continuous at 0. Then δ is continuous.

Proof. If at least one of α and β is not an algebraic homomorphism, then Proposition 3.3 yields the continuity of δ . If both α and β are algebraic homomorphisms, then they are bounded automorphisms of $B(\mathfrak{X})$. Theorem 3.2 implies that δ is continuous.

Removing the continuity in above theorem, we have the following results.

Theorem 3.5. For a complex Banach space \mathfrak{X} and two mappings α , β on $B(\mathfrak{X})$, assume that α and β are surjective and multiplicative and there are rank one operators T_0 and S_0 such that $\alpha(T_0) \neq 0$ and $\beta(S_0) \neq 0$. Then every (α, β) -derivation from $B(\mathfrak{X})$ into itself is continuous.

Proof. It suffices to show that α and β are (bounded) automorphisms of $B(\mathfrak{X})$. Assume that $\delta \neq 0$.

Since α and β are surjective and multiplicative, it is not difficult to show that, for each $\lambda \in \mathbb{C}$, there are scales $f(\lambda)$ and $g(\lambda)$ such that $\alpha(\lambda I) = f(\lambda)I$, $\beta(\lambda I) = g(\lambda)I$ and $\alpha(I) = I$, $\beta(I) = I$. Note that $\delta(I) = \delta(I)\alpha(I) + \beta(I)\delta(I) =$ $2\delta(I)$, which yields $\delta(I) = 0$. Hence for $\lambda \in \mathbb{C}$ and $T \in B(\mathfrak{X})$, $\lambda\delta(T) =$ $\delta(T \cdot \lambda I) = \delta(T)\alpha(\lambda I) + \beta(T)\delta(\lambda I) = \delta(T)\alpha(\lambda I) = f(\lambda)\delta(T)$, which implies that $f(\lambda) = \lambda$, and thus, $\alpha(\lambda I) = \lambda I$. Hence α is homogeneous. Similarly, using $\lambda\delta(T) = \delta(\lambda I \cdot T)$, we can get that β is also homogeneous.

Now we show that α and β are injective.

Let $T_0 = \xi_0 \otimes f_0$ be the rank one operator such that $\alpha(T_0) \neq 0$. For each rank one operator $\xi \otimes f$, choose $g_0 \in \mathfrak{X}^*$ and $\eta_0 \in \mathfrak{X}$ such that $g_0(\xi) = f(\eta_0) = 1$. Then $\xi_0 \otimes f_0 = (\xi_0 \otimes g_0)(\xi \otimes f)(\eta_0 \otimes f_0)$, which implies $\alpha(\xi \otimes f) \neq 0$ for all rank one operators $\xi \otimes f$.

If $\alpha(T) = 0$, then T = 0. For, otherwise, there exists $\xi \in \mathfrak{X}$ with $T\xi \neq 0$. For $f_0 \in \mathfrak{X}^*$, $f_0 \neq 0$, we have $T\xi \otimes f_0$ is a rank one operator, but $\alpha(T\xi \otimes f_0) = \alpha(T)\alpha(\xi \otimes f_0) = 0$, which is a contradiction with above argument.

Next we show α is injective on the set of all rank one operators. Let $R = \xi_0 \otimes f_0$ and $S = \eta_0 \otimes g_0$ be two arbitrary rank one operators with $\alpha(R) = \alpha(S)$. If R and S are linearly independent, and ξ_0 and η_0 are linearly dependent, then f_0 and g_0 are linearly independent. Choosing $\xi \in \mathfrak{X}$ with $f_0(\xi) = 1$ and $g_0(\xi) = 0$, we have $R(\xi \otimes f_0) = \xi_0 \otimes f_0$ and $S(\xi \otimes f_0) = 0$, which is impossible, for $0 \neq \alpha(R(\xi \otimes f_0)) = \alpha(S(\xi \otimes f_0)) = 0$. If R and S are linearly independent, and ξ_0 and η_0 are linearly independent, then we can choose $h_0 \in \mathfrak{X}^*$ such that $h_0(\xi_0) = 0$ and $h_0(\eta_0) = 1$. Hence $(\xi_0 \otimes h_0)R = (\xi_0 \otimes h_0)(\xi_0 \otimes f_0) = 0$ and $(\xi_0 \otimes h_0)S = (\xi_0 \otimes h_0)(\eta_0 \otimes g_0) = \xi_0 \otimes g_0 \neq 0$. So $0 = \alpha((\xi_0 \otimes h_0)R) = \alpha((\xi_0 \otimes h_0)S) \neq 0$, which is a contradiction. Hence R and S are linearly dependent. The homogeneity of α yields R = S.

If $\alpha(T) = \alpha(S)$ for $T, S \in B(\mathfrak{X})$, then for each nonzero vectors $\xi \in \mathfrak{X}$ and $f \in \mathfrak{X}^*$, we have $\alpha(S\xi \otimes f) = \alpha(T\xi \otimes f)$. Obviously, $S\xi = 0$ if and only if

 $T\xi = 0$. If $S\xi \neq 0$, using the injectivity of α on the set of all rank one operators and the arbitrariness of f, we have $S\xi = T\xi$. Hence S = T. We have shown that α is injective. Similarly, we can show the injectivity of β .

Hence α and β are multiplicative bijections on $B(\mathfrak{X})$. By the celebrated result of Martindale in [9], α and β are additive. Consequently, α and β are surjective algebraic homomorphisms, hence are automorphisms on $B(\mathfrak{X})$. By Theorem 3.2, δ is continuous.

4. The C^* -algebra case

In this section we study the continuity of (α, β) -derivations of C^* -algebras into their Banach modules. Inspiring the proof of the related results on the ordinary derivations in [13], we have the following Theorem 4.4. We start with some lemmas which can be found in Ex 4.6.39, Ex 4.6.13 and Ex 4.6.20 in [6] (see also Lemma 1 and the proof of Theorem 3 in [13]).

Lemma 4.1 ([6, 13]). Let \mathcal{J} be a closed two-sided ideal in a unital C^* -algebra $\mathcal{A}, B \in \mathcal{J}$ a positive element with $||B|| \leq 1, A \in \mathcal{J}$ with $AA^* \leq B^4$. Then A = BC for some C in \mathcal{J} with $||C|| \leq 1$.

Lemma 4.2 ([6, 13]). Suppose that \mathcal{D} is an infinite dimensional unital C^* -algebra. Then there is an infinite sequence $\{A_1, A_2, \ldots\}$ of nonzero positive elements in \mathcal{D} such that $A_j A_k = 0$ for $j \neq k$.

Lemma 4.3 ([6, 13]). Suppose that \mathcal{A} and \mathcal{B} are unital C^* -algebras and φ is a *-homomorphism from \mathcal{A} onto \mathcal{B} . For each sequence $\{B_1, B_2, \ldots\}$ of positive elements of \mathcal{B} such that $B_j B_k = 0$ when $j \neq k$, there is a sequence $\{A_1, A_2, \ldots\}$ of positive elements of \mathcal{A} such that $A_j A_k = 0$ when $j \neq k$ and $\varphi(A_j) = B_j$ for each $j = 1, 2, \ldots$

Theorem 4.4. Let \mathcal{A} be a unital C^* -algebra, let \mathcal{B} be a unital Banach algebra containing \mathcal{A} as a unital Banach subalgebra, and let \mathcal{M} be a Banach \mathcal{B} -module. Suppose that $\alpha, \beta : \mathcal{A} \to \mathcal{B}$ are continuous at 0. Then every (α, β) -derivation δ from \mathcal{A} into \mathcal{M} is continuous.

Proof. For each A in \mathcal{A} , we define the mappings L_A , S_A , γ_A , $\sigma_A : \mathcal{A} \to \mathcal{M}$ by $L_A(T) = \delta(AT)$, $S_A(T) = \beta(A)\delta(T)$, $\gamma_A(T) = \delta(A)\alpha(T)$, $\sigma_A(T) = \beta(T)\delta(A)$

for each T in \mathcal{A} . Since δ is linear, we have L_A and S_A are linear, hence $\gamma_A = L_A - S_A$ is linear. It follows from (iii) of Lemma 3.1 that σ_A is linear. The continuity of α and β at 0 implies the continuity of γ_A and σ_A at 0, hence at every $T \in \mathcal{A}$. Hence γ_A and σ_A are bounded. Let $\mathcal{J} = \{A \in \mathcal{A} : L_A \text{ is bounded}\}$. Obviously, $0 \in \mathcal{J}, \mathcal{J}$ is a subspace of \mathcal{A} , and $\mathcal{J} = \{A \in \mathcal{A} : S_A \text{ is bounded}\}$. Firstly, we claim that \mathcal{J} is a norm closed two-sided ideal of \mathcal{A} .

For each J in \mathcal{J} and A in \mathcal{A} , since L_{JA} is the composition of the bounded mapping L_J and the (bounded) multiplication on the left by $A: T \to AT$ from

 \mathcal{A} into itself, we have that JA is in \mathcal{J} ; on the other hand, by Lemma 3.1(iv), we have

$$S_{AJ}(T) = \beta(AJ)\delta(T) = \beta(A)S_J(T) + \gamma_A(JT) - \gamma_A(J)\alpha(T)$$

for each $T \in \mathcal{A}$. Hence S_{AJ} is continuous at 0, which yields that S_{AJ} is continuous. Hence $AJ \in \mathcal{J}$, so \mathcal{J} is a two-sided ideal of \mathcal{A} .

Let $\{A_n\}$ be a sequence in \mathcal{J} with $A_n \to A \in \mathcal{A}$. For each T in \mathcal{A} , noting that σ_T is bounded, we have $\lim_{n\to\infty} S_{A_n}(T) = \lim_{n\to\infty} \beta(A_n)\delta(T) = \lim_{n\to\infty} \sigma_T(A_n) = \sigma_T(A) = \beta(A)\delta(T) = S_A(T)$. Since $\{S_{A_n}\}$ is a sequence in $B(\mathcal{A}, \mathcal{M})$, the set of all the bounded linear mappings from \mathcal{A} into \mathcal{M} , using the principle of uniform boundedness, we have S_A is also bounded, hence \mathcal{A} belongs to \mathcal{J} . We have established the claim.

Now we show that the restriction $\delta|_{\mathcal{J}}$ to \mathcal{J} of δ is bounded. For otherwise, choose a sequence A_1, A_2, \ldots in \mathcal{J} such that for each n, $||A_n||^2 \leq \frac{1}{2^n}$ and $||\delta(A_n)|| \geq n$. Let $B = (\sum_{n=1}^{\infty} A_n A_n^*)^{\frac{1}{4}}$. Then B is a positive element in \mathcal{J} with $||B|| \leq 1$ and $A_n A_n^* \leq B^4$ for each n. By Lemma 4.1, for each n, there exists C_n in \mathcal{J} such that $||C_n|| \leq 1$ and $A_n = BC_n$. Hence $||L_B(C_n)|| = ||\delta(A_n)|| \geq n$ for each n, which contradicts the continuity of L_B . This proves that $\delta|_{\mathcal{J}}$ is bounded.

Let $\pi: \mathcal{A} \to \mathcal{A}/\mathcal{J}$ be the canonical quotient mapping which is a surjective *-homomorphism. We claim that \mathcal{A}/\mathcal{J} is finite dimensional. On the contrary, using Lemma 4.2, we choose an infinite sequence $\{\widetilde{A}_1, \widetilde{A}_2, \ldots\}$ of nonzero positive elements in \mathcal{A}/\mathcal{J} such that $\widetilde{A}_j\widetilde{A}_k = 0$ when $j \neq k$. By Lemma 4.3, there is an infinite sequence $\{A_1, A_2, \ldots\}$ of nonzero positive elements in \mathcal{A} such that $A_jA_k = 0$ when $j \neq k$ and $\pi(A_j) = \widetilde{A}_j$ for each j. Since \widetilde{A}_j is nonzero in \mathcal{A}/\mathcal{J} , we have that A_j , and hence, A_j^2 is not in \mathcal{J} , which implies that $L_{A_j^2}$ is unbounded. Consequently, we have constructed a sequence A_1, A_2, \ldots of positive elements in \mathcal{A} such that $A_j^2 \notin \mathcal{J}$ and $A_jA_k \neq 0$ when $j \neq k$. Replacing A_j by an appropriate scalar multiple, we may assume also that $||A_j|| \leq 1$ for each j. Since $L_{A_j^2}$ is unbounded, there is T_j in \mathcal{A} such that $||T_j|| \leq 2^{-j}$ and $||L_{A_j^2}(T_j)|| = ||\delta(A_j^2T_j)|| \geq ||\gamma_{A_j}|| + j$. Let $A = \sum_{j=1}^{\infty} A_jT_j$. Then $A \in \mathcal{A}$, $||A|| \leq 1$ and $A_jA = A_j^2T_j$. Hence, for each $j = 1, 2, \ldots$,

$$\begin{aligned} \|\sigma_A\| &\geq \|\sigma_A(A_j)\| = \|\beta(A_j)\delta(A)\| = \|\delta(A_jA) - \delta(A_j)\alpha(A)\| \\ &= \|\delta(A_j^2T_j) - \gamma_{A_j}(A)\| \ge \|\delta(A_j^2T_j)\| - \|\gamma_{A_j}(A)\| \\ &\geq \|\delta(A_j^2T_j)\| - \|\gamma_{A_j}\| \ge j, \end{aligned}$$

which is impossible. Hence \mathcal{A}/\mathcal{J} is finite dimensional.

Since $\delta|_{\mathcal{J}}$ is norm continuous and \mathcal{J} has finite codimension in \mathcal{A} , it follows that δ is norm continuous.

Remark. When \mathcal{A} in above theorem is only a Banach algebra, we can also get the closed two-sided ideal \mathcal{J} of \mathcal{A} . Using the closed graph theorem, we can show that if \mathcal{J} has a bounded left approximate identity, then the restriction

 $\delta|_{\mathcal{J}}$ of δ to \mathcal{J} is bounded. Firstly, we recall the Cohen's factorization theorem ([1], Corollary 12 in Chapter 1), which tells us if \mathcal{B} is a Banach algebra with a bounded left approximate identity, then for each sequence $\{A_n\}$ in \mathcal{B} with $A_n \to 0$, there exist $A, B_n \in \mathcal{B}$ with $A_n = AB_n$, (n = 1, 2, ...) and $B_n \to 0$. Now we show the boundedness of $\delta|_{\mathcal{J}}$. Let $A_n \in \mathcal{J}$ (n = 1, 2, ...) with $A_n \to 0$ and $\delta(A_n) \to J$. It follows from the Cohen's factorization theorem that there exist $A, B_n \in \mathcal{J}$ with $A_n = AB_n$, (n = 1, 2, ...) and $B_n \to 0$. Since $\delta(A_n) = \delta(A)\alpha(B_n) + \beta(A)\delta(B_n)$ for each n and $A \in \mathcal{J}$, by Lemma 3.1(i), the boundedness of S_A and the continuity of α at 0 yield J = 0. Hence $\delta|_{\mathcal{J}}$ is continuous.

Let S be a von Neumann algebra acting on a separable Hilbert space \mathfrak{H} , let \mathcal{M} be a dual normal S-module. If \mathcal{M}_* is the predual of \mathcal{M} , we write $\langle M, \omega \rangle$ in place of $M(\omega)$ for each $M \in \mathcal{M}$ and $\omega \in \mathcal{M}_*$. Then \mathcal{M}_* is a Banach S-module under the following module actions determined by

$$\langle M, \omega A \rangle = \langle AM, \omega \rangle, \ \langle M, A\omega \rangle = \langle MA, \omega \rangle$$

for $\omega \in \mathcal{M}_*$, $A \in \mathcal{S}, M \in \mathcal{M}$. In [13], using the properties of the Mackey topologies on \mathcal{M}_* and \mathcal{S} , Ringrose proved that the mappings $A \to \omega A$, $A \to A\omega$ are continuous from the unit ball of \mathcal{S} (with strong^{*} topology) into \mathcal{M}_* (with norm topology). Hence, for a C^* -subalgebra \mathcal{A} of \mathcal{S} and a pair of ultraweakly and strong^{*} continuous linear mappings α, β from \mathcal{A} into \mathcal{S} , the mappings $A \to \alpha(A)\omega, A \to \omega\beta(A)$ are strong^{*}-norm continuous from the unit ball of \mathcal{A} into \mathcal{M}_* . We have the following corollary.

Corollary 4.5. Let S be a von Neumann algebra acting on a separable Hilbert space \mathfrak{H} , and let \mathcal{A} be a unital C^* -subalgebra of S, with the weak closure \mathcal{R} . Suppose that \mathcal{M} is a dual normal S-module and α , β are two ultraweakly and strong^{*} continuous linear mappings from \mathcal{A} into S. Then every (α, β) derivation δ from \mathcal{A} into \mathcal{M} is ultraweakly-weak^{*} continuous, and extends to an ultraweakly-weak^{*} continuous $(\overline{\alpha}, \overline{\beta})$ -derivation of \mathcal{R} , where $\overline{\alpha}$ and $\overline{\beta}$ are the extension of α and β to \mathcal{R} , respectively.

Proof. By Theorem 4.4, δ is norm continuous. To establish the ultraweakweak^{*} continuity of δ , it suffices to show that, for each ω in \mathcal{M}_* , the linear functional $\varphi : \mathcal{A} \to \mathbb{C}$, defined by $\varphi(\mathcal{A}) = \langle \delta(\mathcal{A}), \omega \rangle$ for each $\mathcal{A} \in \mathcal{A}$, is ultraweakly continuous (equivalently, show that φ is continuous on the unit ball of \mathcal{A} under the weak operator topology). By Lemma 7.1.3 in [6], we only need to prove that the restriction of φ to \mathcal{A}_1^+ , the set of all positive elements in the unit ball of \mathcal{A} , is strongly continuous at 0.

Let $\{T_{\iota}\}$ be a net converging strongly to 0 in \mathcal{A}_{1}^{+} . Then $\{T_{\iota}^{1/2}\}$ converges strongly, and hence under the strong^{*} topology, to 0. Since α and β are ultraweakly and strong^{*} continuous, by the previous argument of Corollary 4.5,

both $\{\|\alpha(T_{\iota}^{1/2})\omega\|\}$ and $\{\|\omega\beta(T_{\iota}^{1/2})\|\}$ converge to 0. It follows that

$$\begin{aligned} |\varphi(T_{\iota})| &= \|\langle \delta(T_{\iota}^{1/2}T_{\iota}^{1/2}), \omega \rangle \| \\ &= \|\langle \delta(T_{\iota}^{1/2})\alpha(T_{\iota}^{1/2}) + \beta(T_{\iota}^{1/2})\delta(T_{\iota}^{1/2}), \omega \rangle \| \\ &= \|\langle \delta(T_{\iota}^{1/2}), \alpha(T_{\iota}^{1/2})\omega + \omega\beta(T_{\iota}^{1/2}) \rangle \| \\ &\leq \|\delta\|(\|\alpha(T_{\iota}^{1/2})\omega\| + \|\omega\beta(T_{\iota}^{1/2})\|) \longrightarrow 0. \end{aligned}$$

Hence we have proved that δ is ultraweakly-weak^{*} continuous. Since by Kaplansky density theorem, the unit ball of \mathcal{A} is weakly dense in the unit ball of \mathcal{R} , and the unit ball \mathcal{M} is weak^{*} compact, we have that δ can extend without increase in norm to an ultraweak-weak^{*} continuous linear mapping, denoted by $\overline{\delta}$, from \mathcal{R} into \mathcal{M} .

Now, we claim that $\overline{\delta}$ is an $(\overline{\alpha}, \overline{\beta})$ -derivation. For a given arbitrary element $\omega \in \mathcal{M}_*$, define a bilinear form $F_\omega : \mathcal{R} \times \mathcal{R} \to \mathbb{C}$ by $F_\omega(A, B) = \langle \overline{\delta}(AB) - \overline{\delta}(A)\overline{\alpha}(B) - \overline{\beta}(A)\overline{\delta}(B), \omega \rangle$ for each pair $A, B \in \mathcal{R}$. Clearly, $F_\omega(A, B) = 0$ when A and B are in \mathcal{A} . For self-adjoint operators $A, B \in \mathcal{R}$, by Kaplansky density theorem, we choose self-adjoint element $\{A_\iota\}$ and $\{B_\iota\}$ in \mathcal{A} which converges strongly to A and B, respectively and $||A_\iota|| \leq ||A||, ||B_\iota|| \leq ||B||$ for each ι . Also since the joint multiplication is strongly continuous on the bounded sets of self-adjoint elements, we have $\{A_\iota B_\iota\}$ converges strongly to AB, and hence $F_\omega(A, B) = \lim_{\iota} F_\omega(A_\iota, B_\iota) = 0$. Since ω is arbitrary, we have $\overline{\delta}(AB) - \overline{\delta}(A)\overline{\alpha}(B) - \overline{\beta}(A)\overline{\delta}(B) = 0$ for arbitrary self-adjoint operators, and hence for any elements, in \mathcal{R} . Consequently, δ is an $(\overline{\alpha}, \overline{\beta})$ derivation.

The following corollary is a direct result of Corollary 4.5.

Corollary 4.6. Let \mathcal{R} and \mathcal{S} be von Neumann algebras acting on a separable Hilbert space \mathfrak{H} , $\mathcal{R} \subseteq \mathcal{S}$ and let \mathcal{M} be a dual normal \mathcal{S} -module. For two given ultraweakly and strong^{*} continuous linear mappings $\alpha, \beta : \mathcal{R} \to \mathcal{S}$, every (α, β) -derivation $\delta : \mathcal{R} \to \mathcal{M}$ is ultraweakly-weak^{*} continuous.

Corollary 4.7. Let S be a von Neumann algebra acting on a separable Hilbert space \mathfrak{H} , \mathcal{A} be an ultraweakly closed unital subalgebra of S. Suppose that \mathcal{M} is a dual normal S-module, α , $\beta : \mathcal{A} \to S$ are ultraweakly and strong^{*} continuous linear mappings. Then for each (α, β) -derivation $\delta : \mathcal{A} \to \mathcal{M}$, there is a central projection P in $\mathcal{A} \cap \mathcal{A}^*$ such that $(\mathcal{A} \cap \mathcal{A}^*)(I - P)$ is finite dimensional and the mapping $A \to \delta(PA)$ from \mathcal{A} into \mathcal{M} is norm continuous.

Proof. Let $\mathcal{R} = \mathcal{A} \cap \mathcal{A}^*$. Then \mathcal{R} is a von Neumann algebra. As in the proof in Theorem 4.4, set $\mathcal{J} = \{A \in \mathcal{R} : L_A \text{ is bounded from } \mathcal{A} \text{ into } \mathcal{M}\}$. By the same argument, one can see that \mathcal{J} is a two-sided ideal of \mathcal{R} . Now we show that \mathcal{J} is ultraweakly closed. Let $\{A_\iota\}$ be a net of elements in \mathcal{J} converging ultraweakly to A. Since \mathcal{J} is a two-sided ideal of a von Neumann algebra, it is selfadjoint, for let $J \in \mathcal{J}$ and J = W|J| be its polar decomposition, we have $W \in \mathcal{R}$ and $J^* = |J|W^* = WJW^* \in \mathcal{J}$. Using Kaplansky density theorem, we assume that $||A_\iota|| \leq ||A||$ for each ι . By Corollary 4.6, the restriction $\delta|_{\mathcal{R}}$ of δ to \mathcal{R} is bounded and ultraweakly-weak^{*} continuous. Hence, for each $T \in \mathcal{A}$, we have $L_A(T) = \delta(AT) = \delta(A)\alpha(T) + \beta(A)\delta(T) = weak^* - \lim_{\iota} \delta(A_{\iota})\alpha(T) + \beta(A_{\iota})\delta(T) = weak^* - \lim_{\iota} \delta(A_{\iota}T) = weak^* - \lim_{\iota} L_{A_{\iota}}(T)$; and moreover, for each ι , we have

$$\begin{aligned} \|L_{A_{\iota}}(T)\| &= \|\delta(A_{\iota})\alpha(T) + \beta(A_{\iota})\delta(T)\| \\ &\leq \|\delta|_{\mathcal{R}}\|\|A_{\iota}\|\|\alpha\|\|T\| + \|\beta\|\|A_{\iota}\|\|\delta(T)\| \\ &\leq \|\delta|_{\mathcal{R}}\|\|\alpha\|\|A\|\|T\| + \|\beta\|\|A\|\|\delta(T)\|. \end{aligned}$$

Using the principle of uniform boundedness, we have $\{||L_{A_{\iota}}||\}$ is bounded. So L_A , as the pointwise limit of the net $\{L_{A_{\iota}}\}$ of continuous mappings from \mathcal{A} into \mathcal{M} , is continuous, and thus $A \in \mathcal{J}$. Hence \mathcal{J} is an ultraweakly two-sided ideal of \mathcal{R} , so there is a unique central projection P in \mathcal{R} such that $\mathcal{J} = \mathcal{R}P$.

Now we claim that $\mathcal{R}(I-P)$ is finite dimensional. For, otherwise, there is a sequence of nontrivial pairwise orthogonal projections $\{Q_n\}$ in \mathcal{R} with sum I-P. Since for each n, the mapping L_{Q_n} is unbounded, there exists A_n in \mathcal{A} such that $||A_n|| \leq 2^{-n}$ and $||\delta(Q_nA_n)|| > 2^n$. Let $A = \sum_{n=1}^{\infty} Q_nA_n$. Then $||A|| \leq 1$ and $Q_nA = Q_nA_n$ for each n. Consequently, $2^n \leq ||\delta(Q_nA_n)|| =$ $||\delta(Q_nA)|| \leq ||\delta|_{\mathcal{R}}||||\alpha(A)|| + ||\beta||||\delta(A)||$ for each n, which is impossible. Hence $\mathcal{R}(I-P)$ is finite dimensional. \Box

Remark. Applying Corollary 4.7 to $\delta^*(A) = \delta(A^*)^*$ on \mathcal{A}^* , we have that there is a central projection Q in $\mathcal{A} \cap \mathcal{A}^*$ such that $(\mathcal{A} \cap \mathcal{A}^*)(I-Q)$ is finite dimensional and the mapping $A \to \delta(AQ)$ from \mathcal{A} into \mathcal{M} is norm continuous.

Corollary 4.8. Suppose that \mathcal{A} is a CSL algebra acting on a separable Hilbert space \mathfrak{H} , *i.e.*, \mathcal{A} is a reflexive algebra whose lattice $Lat(\mathcal{A})$ of invariant projections is commutative. If $\alpha, \beta : \mathcal{A} \to B(\mathfrak{H})$ are ultraweakly and strong^{*} continuous linear mappings, then every (α, β) -derivation from \mathcal{A} into $B(\mathfrak{H})$ is bounded.

Proof. The proof is the same as that of Corollary 2.3 in [2], we describe it briefly. Let $\mathcal{L} = Lat(\mathcal{A})$ and $\mathcal{R} = \mathcal{A} \cap \mathcal{A}^*$. Then $\mathcal{R} = \mathcal{L}'$ with center \mathcal{L}'' . By Corollary 4.7 and its remark, there are projections P and Q in \mathcal{L}'' such that $\mathcal{R}P^{\perp}$ and $\mathcal{R}Q^{\perp}$ are finite dimensional, and the mappings $L_P : A \in \mathcal{A} \to \delta(PA) \in B(\mathfrak{H})$ and $R_Q : A \in \mathcal{A} \to \delta(AQ) \in B(\mathfrak{H})$ are continuous. Let $P^{\perp} = \sum_{i=1}^{k} P_i$ and $Q^{\perp} = \sum_{j=1}^{l} Q_i$ be the sum of minimal projections in \mathcal{L}'' , each of which is finite rank, for $\mathcal{R}P^{\perp} = \sum_{i=1}^{k} \oplus B(P_i\mathfrak{H})$ and $\mathcal{R}Q^{\perp} = \sum_{j=1}^{l} \oplus B(Q_j\mathfrak{H})$ are finite dimensional. Hence for each $A \in \mathcal{A}$, we have $\delta(A) = \delta(PA) + \delta(P^{\perp}AQ) + \sum_{i,j} \delta(P_iAQ_j)$. Since $P_i\mathcal{A}Q_j$ is finite dimensional and L_P , R_Q are continuous, we have δ is continuous.

Acknowledgements. This work was supported by National Natural Science Foundation of China (No. 10971117) and Natural Science Foundation of Shandong Province (No. Y2006A03, ZR2009AQ005).

References

- [1] F. F. Bonsall and J. Duncan, *Complete Normed Algebras*, Springer-Verlag, New York-Heidelberg, 1973.
- [2] E. Christensen, Derivations of nest algebras, Math. Ann. 229 (1977), no. 2, 155-161.
- [3] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs. New Series, 24. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 2000.
- B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067–1073.
- [5] R. V. Kadison, Derivations of operator algebras, Ann. of Math. (2) 83 (1966), 280–293.
- [6] R. V. Kadison and J. Ringrose, Fundamentals of the Theory of Operators, Vol 1: Elementary Theory; Vol 2: Advanced Theory, Graduate Studies in Mathematics, Vol. 15, Vol. 16, American Mathematical Society, 1997.
- [7] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858.
- [8] _____, Derivation of Banach algebras, Seminar on Analytic Functions, Vol. II. Institute for Advanced Study, Prnceton, 1958.
- [9] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), 695–698.
- [10] M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σ -derivations on C^{*}algebras, Proc. Amer. Math. Soc. **134** (2006), no. 11, 3319–3327.
- [11] _____, $\sigma\text{-}derivations in Banach algebras, Bull. Iranian Math. Soc.$ **32**(2006), no. 1, 65–78.
- [12] M. S. Moslehian, Hyers-Ulam-Rassias stability of generalized derivations, Int. J. Math. Math. Sci. 2006 (2006), Art. ID 93942, 8 pp.
- [13] J. R. Ringrose, Automatic continuity of derivations of operator algebras, J. London Math. Soc. (2) 5 (1972), 432–438.
- [14] S. Sakai, On a conjecture of Kaplansky, Tohoku Math. J. (2) 12 (1960), 31-33.
- [15] A. R. Villena, Automatic continuity in associative and nonassociative context, Irish Math. Soc. Bull. No. 46 (2001), 43–76.

CHENGJUN HOU INSTITUTE OF OPERATIONS RESEARCH QUFU NORMAL UNIVERSITY SHANDONG 273165, P. R. CHINA *E-mail address*: cjhou@mail.qfnu.edu.cn

QING MENG SCHOOL OF MATHEMATICAL SCIENCES QUFU NORMAL UNIVERSITY SHANDONG 273165, P. R. CHINA *E-mail address*: mengqing80@163.com