스테레오 매칭 과정에 있어서 매칭 비용을 구하는 것은 매우 중요한 과정이다. 이러한 스테레오 매칭 과정의 성능을 살펴보기 위하여 본 논문에서는 기존에 제안된 매칭 비용 함수들에 대한 기본 개념들을 소개하고 각각의 성능 및 장점을 분석하고자 한다. 가장 간단한 매칭 비용 함수는 매칭 되는 영상의 일관된 밝기를 이용하여 좌, 우 영상 간 서로 대응하는 대응점을 추정하는 과정으로, 본 논문에서 다루는 매칭 비용함수는 화소 기반과 윈도우 기반의 매칭 비용 방법으로 크게 두 가지로 나눌 수 있다. 화소 기반의 방법으로는 절대 밝기차(the absolute intensity differences: AD)와 sampling-intensitive absolute differences of Birchfield and Tomasi (BT) 방법이 있고, 윈도우 기반의 방법으로는 차이 절대 값의 합(sum of the absolute differences: SAD), 차이 제곱 값의 합(sum of squred differences: SSD), 표준화 상호상관성(normalized cross-correlation: NCC), 제로 평균 표준화 상호 상관성(zero-mean normalized cross-correlation: ZNCC), census transform, the absolute differences census transform (AD-Census) 이 있다. 본 논문에서는 앞서 언급한 기존에 제안된 매칭 비용 함수들을 정확도와 시간 복잡도를 측정했다. 정확도 측면에서 AD-Census 방법이 평균적으로 가장 낮은 매칭 율을 보여줬고, 제로 평균 표준화 상호 상관성 방법은 non-occlusion과 all 평가 항목에서 가장 낮은 매칭 오차율을 보여 주지만, discontinuities 평가 항목에서는 블러 효과 때문에 높은 매칭 오차율을 보여 주었다. 시간 복잡도 측면에서는 화소 기반인 절대 밝기차 방법이 낮은 복잡도를 보여 주였다.