Query Expansion based on Knowledge Extraction and Latent Dirichlet Allocation for Clinical Decision Support

의학 문서 검색을 위한 지식 추출 및 LDA 기반 질의 확장

  • Jo, Seung-Hyeon (Division of Computer Science and Engineering, CAIIT, Chonbuk National University) ;
  • Lee, Kyung-Soon (Division of Computer Science and Engineering, CAIIT, Chonbuk National University)
  • 조승현 (전북대학교 전자정보공학부) ;
  • 이경순 (전북대학교 전자정보공학부)
  • Published : 2015.10.17

Abstract

본 논문에서는 임상 의사 결정 지원을 위한 UMLS와 위키피디아를 이용하여 지식 정보를 추출하고 질의 유형 정보를 이용한 LDA 기반 질의 확장 방법을 제안한다. 질의로는 해당 환자가 겪고 있는 증상들이 주어진다. UMLS와 위키피디아를 사용하여 병명과 병과 관련된 증상, 검사 방법, 치료 방법 정보를 추출한다. UMLS와 위키피디아를 사용하여 추출한 의학 정보를 이용하여 질의와 관련된 병명을 추출한다. 질의와 관련된 병명을 이용하여 추가 증상, 검사 방법, 치료 방법 정보를 확장 질의로 선택한다. 또한, LDA를 실행한 후, Word-Topic 클러스터에서 질의와 관련된 클러스터를 추출하고 Document-Topic 클러스터에서 초기 검색 결과와 관련이 높은 클러스터를 추출한다. 추출한 Word-Topic 클러스터와 Document-Topic 클러스터 중 같은 번호를 가지고 있는 클러스터를 찾는다. 그 후, Word-Topic 클러스터에서 의학 용어를 추출하여 확장 질의로 선택한다. 제안 방법의 유효성을 검증하기 위해 TREC Clinical Decision Support(CDS) 2014 테스트 컬렉션에 대해 비교 평가한다.

Keywords