Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2015.10a
- /
- Pages.99-103
- /
- 2015
- /
- 2005-3053(pISSN)
Improving a CNN-based Image Annotation System Using Multi-Labeled Images
다중 레이블 이미지를 활용한 CNN기반 이미지 어노테이션 시스템의 개선
- Kim, Taeksoo (Naver Corp.) ;
- Kim, Sangbum (Naver Corp.)
- Published : 2015.10.17
Abstract
최근 딥러닝 기술의 발전에 힘입어 이미지로부터 자동으로 관련된 단어 혹은 문장을 생성하는 연구들이 진행되고 있는데, 많은 연구들은 이미지와 단어가 1:1로 대응된 잘 정련된 학습 집합을 필요로 한다. 한편 스마트폰 보급의 확산으로 인스타그램, 폴라 등의 이미지 기반 SNS가 급속하게 성장함에 따라 인터넷에는 한 이미지의 복수개의 단어(태그)가 부착되어있는 데이터들이 폭증하고 있는 것이 현실이다. 본 논문에서는 소규모의 잘 정련된 학습 집합뿐 아니라 이러한 대규모의 다중 레이블 데이터를 같이 활용하여 이미지로부터 태그를 생성하는 개선된 CNN구조 및 학습알고리즘을 제안한다. 기존의 분류 기반 모델에 은닉층을 추가하고 새로운 학습 방법을 도입한 결과, 어노테이션 성능이 기존 모델보다 11% 이상 향상되었다.