신형/장기 운영 무기체계 수리부속의 불균형적 수요발생에 따른 항공기 불가동을 해소하기 위한 수요예측기법 개선의 필요성이 대두되고 있다. 항공기 수리부품들은 고단가이고, 청구에 소요되는 기간이 길어 사전에 예측하지 못한다면 작전지원에 문제가 발생하게 된다. 신뢰성 있는 수요 예측은 과보유로 인한 재고비용을 줄일 수 있으며, 수요를 예측하기 위한 방법은 회귀분석, 단/다변량 시 계열분석, 데이터 마이닝 기법 등이 있다. 항공기 부품의 수요 예측은 그 부품의 수가 8만 가지 이상이며 각 부품간의 관계를 분석하기에 어려움이 있어 시간에 종속적인 단변량 시계열 분석을 통해 수요예측을 실시하였다. 본 연구에서는 이러한 문제점을 해결하기 위하여 첫째, 자료를 기존 AMMIS 체계에서 고장 자료를 실수요로 가정하여 수집하였다. 고장이나 주기 검사, 시한성 기술지시 등으로 부품을 장 탈착하게 되면 정비부서에서 이를 전산프로그램인 AMMIS에 입력하도록 하고 있다. 따라서 실제 정비부서에서 부품을 사용한 현황을 실수요라고 인정할 수 있다. 둘째, 1999년 1월부터 2007년 2월까지의 월별 자료(98개)를 수집하였다. 자료의 수가 충분하므로 예측 정확성 향상을 위하여 ARIMA기법에 적용이 가능하다. 고장빈도가 높은 부품 50여개를 추출하여 Box-Jenkins의 ARIMA기법을 적용하여 예측을 실시하였다 실시 결과 적합한 모형식을 도출하였으며, 현용기법보다 예측 정확성이 높다는 결론을 얻었다.