Minimal s-Urysohn and minimal s-regular spaces are studied. An s-Urysohn (respectively, s-regular) space (X, $\mathfrak{T}$) is said to be minimal s-Urysohn (respectively, minimal s-regular) if for no topology $\mathfrak{T}^{\prime}$ on X which is strictly weaker than $\mathfrak{T}$, (X, $\mathfrak{T}^{\prime}$) is s-Urysohn (respectively s-regular). Several characterizations and other related properties of these classes of spaces have been obtained. The present paper is a study of minimal P-spaces where P refers to the property of being an s-Urysohn space or an s-regular space. A P-space (X, $\mathfrak{T}$) is said to be minimal P if for no topology $\mathfrak{T}^{\prime}$ on X such that $\mathfrak{T}^{\prime}$ is strictly weaker than $\mathfrak{T}$, (X, $\mathfrak{T}^{\prime}$) has the property P. A space X is said to be s-Urysohn [2] if for any two distinct points x and y of X there exist semi-open set U and V containing x and y respectively such that $clU{\bigcap}clV={\phi}$, where clU denotes the closure of U. A space X is said to be s-regular [6] if for any point x and a closed set F not containing x there exist disjoint semi-open sets U and V such that $x{\in}U$ and $F{\subseteq}V$. Throughout the paper the spaces are assumed to be Hausdorff.