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OSCILLATORY BEHAVIOUR OF SOLUTIONS OF y" + P (x)y = f ( x ) 

By A, A, S, Zaghrout and A. A. Ragab 

Abstract: This papcr is a study of the osci llatory and asymptotic bchaviour 

이 solu t ions of the second ordcr nonhomogcncous lincar differential cquation 

y" + P Cx)y = f(x) , and lhe associatcd homogcncous equation. Conditions are 

dctcrmined, 1mdcr which the nonhomogeneous equation is oscillatory if and 

onl)' if lhe homogencous cquation is oscillatory. 

1. Introduction 

This paper is conccrncd with the oscillatory and asymptotic behaviour of 

solutions o[ t. hc second order nonhomogeneous lincar differcnt ial cquation 

y"+P(x)y=f(x) , (NH ) 

in relation to the associatcd hornogeneous equation 
y"+P(x)y=O, (H ) 

‘\'hcrc P (x) and f (x) arc assumed to bc continuous real-valucd functions on the 

infini tc halfaxis [a , ∞) ， for somc rea l numbcr a, l t is also assumcd that 

['(x)듣0， þ'(x)는O. Thc authors [1-8J , as cxample, havc obtained rcsults for 

these equations. This paper wi Jl extcnd their work. 

DEFI\ITIO:;S. (1) Wc say a solution of (NH ) is ' oscillatory on 1= [a , ∞) if 

il has on infinitc numbcr of l,eros on [a . ∞) for every a프O. A solut ion is said 

[0 bc ’zonoscil!atory on 1 if il has only a finitc number of zcros on 1 for SDIl1C 

x、a. Further, the equation (NH ) is oscillatory if it has at least one oscillatory 

solution and is nonoscillatory if a Jl solut ions are nonoscillatory. 

(2) A solution of (H ) is osciJlatory if it has an infinite numbcr of zeros on 

1 and is nonoscillatory if it has onl)' a finitc numbcr of zeros on 1. As for 

(NH) , lhc equation ( H ) is oscillatory if it has at Icast one osciIIatory solution 

and is nonosci Jlatory if no sol ulion of ( H ) is oscilla tory on 1. By thc Strum 

interlac ing thcorcm , ( H ) is oscillalory if and on ly if a Jl solutions are osci Jl atory. 

, 3) A solution of (H ) is cι J1 ed quickly oscillatory if il is osciJlatory and 

scqucncc of zcr∞ {x,l ls such ll1at j많(x，l+ l - xro. 



8 A. A. S. Z aghrout alld A. A. Ragab 

The differcnce belwccn an oscillalory solulion of (11) and an osc illalory 

solulion of ( N11 ) is iIIuslralcd by the simplc cq uation y" (x) = f (x) , \\"hcrc 
o , x = o 

f (x) =L_ . , . 1 • ’ 
l(20x3- x)sin~ -8x:!cos ~- ， xζ(0， ∞) 

! 1 \ It is casily verified lhat y (x )= x5sin( < ) is a solution of lhis cqual ion. ~ lor \ x } 
eovcr, this solu t ion has infinilely many zcros on [0, 1J, and yel lhis solulion 

is nonzero on (1. ∞). Such a solution, wc wish 10 call nonoscillatory. This 
behaviour does not Occur in equation (11) sin ce lhe only solution of (11) having 
infinitcly many zeros on a finite interval is thc trivial solution (i. c. the identi. 

cally zcro solul ion). [Jowcver , one can show lhat if f(x)낯o on any finite 

interval, lhen any solution of ( N11 ) has only a finite num ber of zeros on lhat 

intervals 
Let ,,( x ) and v(x) be any two funclion s of C'-class, lhc W ronsk ian W [u , 씨 (x ) 

=“ (x )v'(x) - ,,'(x)v(x) . If (“( x ) , v(x)) is a solulion basis for (11) on 1, it 
follows lhat W [u , 씨 (x) = k , where k is nonzero constan t. The solulion basis 

will be callcd a nor1llolized sol“tion basis for (11) if k = l. 

Throughout this paper, we will use frcquenlly l hc following lemma (ßurlon 

[2J , Leighton [5J). 

L E:\ß I A A . If W [ν ， vJ (x)낯o on [0, ∞)， Ilzen Ihe zeros of ,,(x) flIld v(x) 

seþarate each other on 1. 

In our a nalysis we shall frequently cmploy lhc following identily which may 

be verificd by diffcrcnlialion , 

W [", yJ ( x )= !:f(t)tI(t )dt , ( 1. 1) 

wherc y(x) is lhc solulion of (NH ) and u(x) is a l1 y solu l io l1 of (11). Thc 

particular solution yp of ( N11 ) can be writtcn in the form 
rX I ι(x) v(x) I 

'p=Jn 1", J" l f (t )dl , 
‘ o I ,,(1) v(t) I 

where (1l, v) is normalized solution basis for (11) . and hence the solution y of 
(N11) has the form 

y싸 

whcrc C
1 

and C
2 

arc arb itrary constants. 
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2. Main rcsuIts 

9 

)Jow , wc arc ablc to study the oscillatory and asymptotic bchaviour of 

solutions of (N 11) and ( 11). 

TIi EORE~[ 1. The fun ction W [ι yJ (x) ,.<O on J if and only if y(x) has only 

simple zeros and t"e zeros of y(x) and u(x) scparate each other on J. 

PROO F. Lemma A impl ics that if W [u , yJ (x) ""O on J , lhcn lhc zcros of y(x) 

are simple and the zeros of y(x) and κ(x) scparale each othcr on 1 indcpendcnt 
of f ( x ) . Now , assumc lhat x, and x2 arc any two consecutive zeros of y(x) , 

%3 and X
tI 

arc t\\'o consecutivc zcros of tt (x). such that, X1 < X3 < X2 < .'t',r 

We can assume, wilhoul loss of generalily y(x)> O on ( x ,. x) and ,,(x) <O 

on (x3' x ,). Jt f이 10영 that W [u(xi) , y(x,)J> O, i = 1, 2, 3,4. Wc havc , from 

( 1. 1) , W [u , yJ ( x ) =J ;(1)κ(t)dt. If lhere cxists a point ~E(X" X3) such that 

W [ι yJ (E) = O, lhcn therc must exist a point ηE(X " x3) such that W ' [ι， yJ (η) 

= 0. This implics f(ψκ(1/) =Oor μ(껴 =0 conlrad icting the scparation of zeros 
of u(x) and y(x). Then, it fo llows that W [u , yJ";O on (x

" 

x3) and simiJarly 
W [ι yJ:lO on (x3' x,). This completes thc proof of the theorcm. 

T IIEOllE.\1 2. If f (x) is a solution of (11) , t/zeκ (NlI) is oscillalory i f and 

only if ( 11) i s oscillalory. 
{'X , 

PROOF. Prom ( 1. 1) we obta in W [f , yJ (x) = I f (I )dl. It follows lhat W' fJ, 
‘ a 

yJ 는O. Sincc f(x)낯o on any subinterval of J , thcn W [λ yJ has al most onc 

zcro on [a , ∞) and lhc rcsu 1 t f ollows. 

T IIEOREM 3. Jf (11) is oscillatory , then all nonoscillalory solμtiO/ls of ( N 11) 

are evenlually of Ihe same sign. Moreover , if f (x) 잊o for large x , Ihen all 

nonoscillalory solulions of (NlI) are evenlually of I"e same sign ns f(x) . 

PROOF. Lct (11) be osci llatory, and supposc that y, and y2 are nonoscillalory 
solulions of (NlI) such lha l lhc sign y,(x) ,,;sign y z<x) for large x. Then, y ,­
y2 is nonosc illalory soJulion of (11) which is a contradiction to thc hypothesis. 
Suppose that f(x)옹o on 1 and that y(x) is nonoscillatory soJut ion of (NlI) such 

that sign y(x) ,,;sign f(x) on [b, ∞')， b는a. Tt follows that y is a solut ion of the 
homogcncous equation ω" + (p-f/y)ω= 0. 

By Slrum comparison lhcorcm , lhis impl ics (H ) must bc nonoscillalory , 

which is a conlrad iclion . IIcncc , sign y = sign f for largc x. This com plclcs 
the proof. 
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Equalion (NH ) can bc wrillcn in thc fonn 

y" = þ(x) [h(x)-y(x)) 

“’hcrc h( x ) = f(x) I Þ(x). þ(x) -I-O for cvcry xE [a , ∞)， la(x)GC2 lVc note that 

y(x) is a solu t ion of (N H ) lhen ω(x)=y(x) -h(x) is a solulion of ω"+þ(x)ω= 

-h"(x). lf an intcgralion by parts is pcrformcd on lhc Icft hand mcmber of 

( 1. 1) \\'c gcl 

(',.…)u’(t)dl= [y ’(1)“(I )-(y(l )-h(l ))u'(I));. (2. 1) " , 
THEORE~I 4. S1Iþþose (H) is oscillalory and h (x)ιc-

( i ) lf h(1) is an incrcasil.g f uncliOl' and bo",.dcd above , Ilz en no sollth"" 

slays above Iz(:r) on 1 

( ii ) 1 f h(x) is a decreasing f ,’mction and bounded belou’, Ih cn no sol찌10lt 

slays above ι(x) on l. 

Plwor. \vc shall provc (ii) , the proof of ( i) st raigh lforward. Lct h(x) be 

lhc solu lion of (H ) such that μ(a)> O， 1I'(a) = 0. Il follows thal thcre exisls a 

point b> a such lhat 1I'(b) - 0 and μ'(x) < 0 on (a , b). If y(x) is a solu lion of 

( NH) wilh y(a)> lt(a) , lhcn c ilhe r y’(a)드"Q 01' by u5ing idenlily (2. 1) 、\' ilh x = b, 

y’ (b) <O, In c ilhcr casc, 5incc 1" (x) <O for y(x)> Iz(:r), il follo\\'5 lhal y(:r) 

mU5l col h(x). This comp letes the prωf. 

THEORHI 5. Lel f (x) chm.ge sign on every i찌crval (b , ∞)， b~a. lf belwcell 

every þair 0/ succesz've sigη clzιngc þoinls b" b2, (wil h (b[ <b)) , of f (x) , Ilzere 

c:risls a nonlrivial sol1llion of (H ) s1lch Ihal u(b[) = O and u(이 OforCE[b[ , b"J. 
Ihen (NH ) is oscillalory, 

l’ROOF. Supposc lhal y(x) is nonoscillalory. Considcr lhc caSC5 

( i) AS5umc y(x)> O for x'>d , d> a , and Icl b[ and b2 be conscculi\'c sign 

changc poin ls of f (x) 씨lh b2> b[ > d . Rcwrilc (1.1) in lhc form 

W [y, 씨 = I f(I) 1I(I)dl. (2.2) 
“ ι 

Our hypothesi5 a lloll's us lo aS5umc lhal f(x)드o in [b[ , b) and 11> 0 in (b[ ’ 

c). Il follo“ 5. from (2. 2) lhat y (c)1I'(c)> y(b[)1I'(b[) > O, wh ich cunlradicls lhal 

facl lhal y(c)u'(c) <0. 

( ii ) AS5ume lhal y(:r) ( 0 for x">d , d > a , lhcn II'C can find con5ccuti\'e s ign 

change poinls b[ and b2 of f (x) such lhal f(x)는o on [b[ , 때 and a solution 

u(l ) of (H ) with 1I(b[ ) 1I(c) = O and “ > 0 on (b , c) for 50mc cζ [b[ , 낀! ζ1. 

Again by (2. 2) “ c arrhc at a contradiction. This comple lcs thc pr∞f 
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1'HEORE.\1 6. Sμppose IIIal (H) is oscillalory and lel IIIe dislance belween 

consec"live sign change poinls 01 f (x) , b" b2 will. b2> bl be bo“’,ded below by a 
conslanl M > O. JI for any sol"lion ,,(x) of (H) every pair consecιtive zeros X I ’ 

Xz are such tlzat !x 1 -x2 ! 드M， IIIen (NH) is oscillalory. 

PRoor. Assume that u(b,) =O and ,,'(bl)> O. Our hypothcsis implics u(x) to 
have another zero in (b" b2). By applying argumcnts uscd to provc theorcm 

5, and then rcsult follows , 

1'HEORE\1 7. Jf (H) is q"ick oscillalory and f(x) cllange sign on (b , ∞) for 

each b> a and il the distance between consec씨ive sign change poinls bo"nded 

below, IIIen (NH ) is oscillalory. 

PRoor. Since (H ) is quickly oscillatory and the distance bctween consecutive 

zeros of (H ) is eventually Icss than thc lo \Ver bound of the consecutive sign 

change points of f(x) . By applying theorem 6, the resuIt follows 

1'IIEORHI 8. If Iim P(x) =∞ and f (x) c/.anges sign on (b , ∞) for each b> a 
x-∞ 

s1lcll IIIal Ihe dislance belψeen consecutive st"gn change þo t"nts is bou’‘ded belOlu, 
IIIen ( H ) is oscillalory, 

PROOF. 1'he hypolhes is Iim P(x) =∞ implies (H ) is quickIy osc ilIatory and 
x-∞ 

the rcsuIts follo ll' from theorem 7. 

1'IIEORE\1 9. If (H ) is oscillalory, lI.en every pair of nonosillalory solulions 

of (NH ) eνentually has lhe same sign. 

PROOF. Suppose y,(x) and y2(<) are nonosciIIatory soIulions of (NH) , lt 
follows ,,(x) = y,(x)- Ylx) is a solulion of ( H ). The assurnption that (H) is 

oscillatory implics lhat (1I) is oscillatory impIies that therc cxists an infinitc 

sequence [x서 of zcros of κ(x) ， lt follo \Vs that y,(x.) =Y2(x.) for a II n. 1'hus, 

yl(x) and y2(x) have the same slgn for large x. 

1'HEOIlEM 10. I f I p(x)dx =∞• then every þair 01 nonoscillatory solutions on 
v , 

(N H) evenlna/l y have IIIe same sign. 

PROOF. The hypothesis impIies (1I) is osci llatory. The result foI Iows by 

applying thcorem 9, 

1'0 derive further properlies for (NH ) we requirc lhe follow ing lheorem of 

Keener (6). 
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THEORE:'I A. [11(x)> o. f' (x)? o. P'(x)드O 끼or XE [a. bJ and il I(x) and 

p(x) are not constant o/t a cO /lll/lon subintervat. than a solulion y 01 (NH ) Stlch 

Ihal y(a) = y’ (a) = 0 is þosilive on ;nlerval (a. bJ . 

This thcorcm cnables us to romparc thc solution of 

y" + þ(x)y= I
1 
(x) . 

z" + þ(x)z =llx). 

whcrc fl(x) , f2(x) and P(x) are or c1- class on [a , bj . 

THEOREM 11. Lel 지> 12 , 1;'>1; . p’드o on [a. bJ. 

(2. 3) 
(2. 4) 

Assκme also 13=/
1
-/

2 
and þ(x) are nol conslanls on cOlIIl/Ion subinlerval. [1 

y(x) and z(x) ara sol t<lions 01 (2.3) and (2.4) respeclively and sal;sl;es y(a) = 

z(a) = y'(a) = z’ (a) = 0. tI .. n y(x)> z(x) lor xE (a. bJ. 

PROOF. Subtracting (2. 4) from (2.3) we havc 

ψ+þ(x)띠=I/x). 

whcre 띠=y-x. Since lix)> O. f'(x)는o and sincc ω has a dou ble zero at x = a. 
Applying thcorem A it follows that ω(x)> O for (a. bJ. 

We remark that if 져(x) and P(x) are not constants on common subinterva l. 
the conclusion of theorem 11 follows i.e. y(x)> z(x). x르(a. bJ. This completcs 

the pr∞f. 

As cxamplc conside r thc cquations 
y” +y= l + e x al1d z” + z = e x’ 

with a=O. The solutions are 

y= 1 +웅(e-x+si!11-3cosx) 

and 

z =+(e - x + sin x-cosx). 

satisfy thc condit ions y(O) = y ’ (O) = z(O) = z’ (0) = 0 we havc 

y-z= 1- cosx;:::0 on [0. ∞). 
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