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OSCILLATORY BEHAVIOUR OF SOLUTIONS OF y”+P(x)y=f(x)

By A.A.S8. Zaghrout and A. A. Ragab

Abstract: This paper is a study of the oscillatory and asymptotic behaviour
of solutions of the second order nonhomogeneous linear differential equation
y'+P(x)y=jf(x), and the associated homogeneous equation. Conditions are
determined, under which the nonhomogeneous equation is oscillatory if and
only if the homogeneous equation is oscillatory.

1. Introduction

This paper is concerned with the oscillatory and asymptotic behaviour of
solutions of the second order nonhomogeneous linear differential equation

YHPRy=f(2), (NH)
in relation to the associated homogeneous equation
¥ +P(x)y=0, (H)

where P(x) and f(x) are assumed to be continuous real-valued functions on the
infinite half axis [e, oo), for some real number @. It is also assumed that
S (x)=<0, p’'(x)=0. The authors [1-8], as example, have obtained results for
these equations. This paper will extend their work.

DEFINITIONS. (1) We say a solution of (NH) is escillatory on I=[a, o) if
it has on infinite number of zeros on [e, o) for every a==0. A solution is said
to be nonoscillatory on [ if it has only a finite number of zeros on I for some
x>>a. Further, the equation (NH) is oscillatory if it has at least one oscillatory
solution and is nonoscillatory if all solutions are nonoscillatory.,

(2) A solution of (H) is oscillatory if it has an infinite number of zeros on
I and is noroscillatory if it has only a finite number of zeros on I. As for
(NH), the equation (H) is oscillatory if it has at least one oscillatory solution
and is nonoscillatory if no solution of (H) is oscillatory on I. By the Strum
interlacing theorem, (H) is oscillatory if and only if all solutions are oscillatory.

13) A solution of (H) is called gquickly oscillatory if it is oscillatory and

sequence of zeros {x"] is such that lim(x";l—x”) =0.
#—Co :
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The difference between an oscillatory solution of (H) and an oscillatory

solution of (NH) is illustrated by the simple equation »”(x)=jf(x), where
0 i =0
= (20x3—x)sin—‘1;48x3cos i_-. x=(0, oo).

It is easily verified that y(x)zﬁsin(fi“) is a solution of this equation. Mor-
eover, this solution has infinitely many zeros on [0, 1], and yet this solution
is nonzero on [l, oo), Such a solution, we wish to call nonoscillatory. This
behaviour does not occur in equation (H) since the only solution of (H) having
infinitely many zeros on a finite interval is the trivial solution (i.e. the identi-
cally zero solution). However, one can show that if f(x)70 on any finite
interval, then any solution of (NH) has only a finite number of zeros on that

intervals.
Let #(x) and »(x) be any two functions of Cl—class, the Wronskian W [w, v] (x)

=u(x)v'(x)—u' (x)v(x). If {#(x),v(x)) is a solution basis for (H) on [, it
follows that W [u, v](x)=k, where k is nonzero constant. The solution basis
will be called a normalized solution basis for (H) if k=1.

Throughout this paper, we will use frequently the following lemma (Burton
[2], Leighton [5]).

LEMMA A. If Wlu,v](x)#0 on [a, o), then the zeros of u(x) and v(x)
separate each other on 1.

In our analysis we shall frequently employ the following identity which may
be verified by differentiation,

Wik, 9= f: fOuhdt, (1.1)

where y(x) is the solution of (NH) and #(x) is any solution of (H). The
particular solution Y of (NH) can be written in the form
o | w(x)  v(x)
y"'-‘f ol auty o)
where [#, »] is normalized solution basis for (H), and hence the solution y of
(NH) has the form

Sf(tat,

y(x)= [Ci—fxf(t)v(t)dﬂ u(x)+ [CBA%rlf:_f(t)zt(t)dt] v(x),

where C, and C, are arbitrary constants.
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2. Main results

Now, we are able to study the oscillatory and asymptotic behaviour of
solutions of (NH) and (H).

THEOREM 1. The function W [u, v](x)7#0 on I if and only if y(x) has only
simple zeros and the zeros of y(x) and u(x) scparale each other on I.

PROOF. Lemma A implies that if W [#, y](x)#0 on I, then the zeros of y(x)
are simple and the zeros of y(x) and #(x) separate each other on [ independent
of f(x). Now, assume that x, and x, are any two consecutive zeros of y(x),
x, and x, are two consecutive zeros of #(x), such that, x, <2, <2, <%

We can assume, without loss of generality y(x)>0 on (x,, x,) and #(x)<0
on (13, xd). It follows that W[u(xr.), y(xl.)]>0. i=1,2,3,4. We have, from
(1.1), Wlx, yl (x)=fxf(t)u(t)dt. If there exists a point EE(xl, x3) such that
W [u, y](£)=0, then there must exist a point 7&(x,, x,) such that W’ (x, y] ()
=0. This implies f(n)u()=0 or «(y)=0 contradicting the separation of zeros
of #(x) and y(x). Then, it follows that W[«, y]#0 on (x,, '”3) and similarly
Wlu, y]#0 on (x, x,). This completes the proof of the theorem.

THEOREM 2. If f(x) is a solution of (H), then (NH) is oscillatory if and
only if (H) is oscillatory.

PROOF. From (1.1) we obtain W [f, y](x)= fz(t)dt. It follows that W’ [f,
a
91>20. Since f(x)#0 on any subinterval of 7, then W[f, y] has at most one
zero on [a, o) and the result follows.

THEOREM 3. If (H) is oscillatory, then all nonoscillatory solutions of (NH)
are eventually of the same sign. Moreover, if f(x)#0 for large x, then all
nonoscillatory solutions of (NH) are eventually of the same sign as f(x).

PROOF. Let (H) be oscillatory, and suppose that y, and y, are nonoscillatory
solutions of (NH) such that the sign yl(x);ﬁsign »,(x) for large x. Then, ¥
¥, is nonoscillatory solution of (#) which is a contradiction to the hypothesis.
Suppose that f(x)70 on I and that y(x) is nonoscillatory solution of (NH) such
that sign y(x)+=sign f(x) on [b, o), b=a. It follows that y is a solution of the
homogeneous equation w”-+(p—f/y)w=0.

By Strum comparison theorem, this implies (H) must be nonoscillatory,
which is a contradiction. Hence, sign y= sign f for large x. This completes
the proof.
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Equation (NH) can be written in the form:
y'=p(x) [h(x)—y(x)] :
where h(x)=f(x)/p(x), p(x)+0 for every x= [a@, oo), h(x)=C". We note that
y(x) is a solution of (NH) then w(x)=y(x)—h(x) is a solution of w”+p(x)w=
—hk”(x). If an integration by parts is performed on the left hand member of
(1.1) we get

] WO (= [y (Du) - (O~ R D) €AY
a

THEOREM 4. Suppose (H) is oscillatory and h(x)c:C"l

(i) If h(t) is an increasing function and bounded above, lhen no solulion
stays above h(x) on I.

(ii) If h(x) is a decreasing function and bounded below, then no solution
stays above h(x) on I.

PROOF. We shall prove (ii), the proof of (i) straightforward. Let h(x) be
the solution of (H) such that #(a)>0, #’(a)=0. It follows that there exists a
point &> a such that #’(6)=0 and #’(x)<0 on (a, b). If y(x) is a solution of
(NH) with y(a)>h(a), then either y'(@)<0 or by using identity (2. 1) with x=5,
¥'(6)<0. In either case, since y’(x)<0 for y(x)>h(x), it follows that y(x)
must cut k(x). This completes the proof.

THEOREM 5. Let f(x) change sign on every interval (b, o), b—a. If belween
every peir of succesive sign change points b, b,, (with (b,<b)), of f(x), there
exists a nontrivial solution of (H) such that #(b,)=0 and u(c)=0 for C<[b, b,],
then (NH) is oscillatory.

PROOF. Suppose that y(x) is nonoscillatory. Consider the cases:
(i) Assume y(x)>0 for x>>d, d>a, and let bl and b2 be consecutive sign
change points of f(x) with &,>6,>d. Rewrite (1.1) in the form

Wiy, ul= j: FOut)dt. @2

Our hypothesis allows us to assume that f(x)=0 in [6,, &) and «>0 in (b,
¢). It follows, from (2.2) that y(e)u'(e)> y(b u’(b)>>0, which contradicts that
fact that y(e)u’(c) <0.

(ii) Assume that y(x)<0 for x>d, d_>a, then we can find consecutive sign
change points b, and b, of f(x) such that f(x)>=0 on [bl. bg] and a solution
u(t) of (H) with u(b,)=u(c)=0 and «>0 on (&, ¢) for some ce[bl, b L.
Again by (2.2) we arrive at a contradiction. This completes the proof.
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THEOREM 6. Suppose that (H) is oscillatory and let the distance belween
consecutive sign change points of f(x), b, lL_, wilh b2> bl be bounded below by a
constanl M >0. If for any solution u(x) of (H) every pair consecutive zeros x,,

1
x, are such that |x,—x,| <M, then (NH) is oscillatory.

PROOF. Assume that u(b1)=0 and u’(b1)>0. Our hypothesis implies #(x) to
have another zero in (&, b:‘,}. By applying arguments used to prove theorem
5, and then result follows.

THEOREM 7. If (H) is quick oscillatory and f(x) change sign on (b, o) for
each b>a and if the distance between consecutlive sign change poinls bounded
below, then (NH) is oscillatory.

PROOF. Since (H) is quickly oscillatory and the distance between consecutive

zeros of (H) is eventually less than the lower bound of the consecutive sign
change points of f(x). By applying theorem 6, the result follows.

THEOREM 8. If lim P(x)=co and f(x) changes sign on (b, o) for each b>a
X—COo

such lthat the distance belween conseculive sign change points is bounded below,
then (H) is oscillatory.

PROOF. The hypothesis lim P(x)=co implies (H) is quickly oscillatory and
X—00
the results follow from theorem 7.
THEOREM 9. If (H) is oscillatory, then every pair of nonosillatory solutions
of (NH) eventually has the same sign.

PROOF. Suppose yl(x) and yz(x) are nonoscillatory solutions of (NH). It
follows u(x)= yj(x)— yz(x) is a solution of (H). The assumption that (H) is
oscillatory implies that (H) is oscillatory implies that there exists an infinite
sequence {x"] of zeros of #(x). It follows that y(x )= y2(xu) for all #. Thus,
y,(x) and yz(x) have the same sign for large x.

THEOREM 10. If f p(x)dx=oco, then every pair of nonoscillalory solutions on
a
(NH) eventually have the same sign.

PROOF. The hypothesis implies (H) is oscillatory. The result follows by
applying theorem 9.

To derive further properties for (NH) we require the following theorem of
Keener [6].
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THEOREM A. If f(x)>0, f/(x)>0, p'(x)<<0 for x=[a, b] and if f(x) and
p(x) are not constant on a common subinierval, then a solution y of (NH) such
that y(a)=y'(a)=0 is positive on interval (a, b).

This theorem enables us to compare the solution of
¥y =£,(), (2.3)
z7+p(x)z=f,(x), 2.9

where fl(:c). fgfx) and p(x) are of Cl—class on [a, b)].

THEOREM 11. Let f,>f,, fi=f,, #’<0 on [a, b].

Assume also f3=f1—- b and p(x) are not constants on common subinterval. If
y(x) end z(x) are solutions of (2.3) and (2.4) respectively and satisfies y(a)=
z(a)=y'(a)=z"(a)=0, then y(x)>z(x) for x=(a, b].

PROOF. Subtracting (2.4) from (2.3) we have
w”+p(w=f,(1),
where w=y—=x. Since f4(x)>0, f(x)=0 and since » has a double zero at r=a.
Applying theorem A it follows that w(x)>0 for (a, b].
We remark that if f,(x) and p(x) are not constants on common subinterval,
the conclusion of theorem 11 follows i.e. y(x)>z(x), x=(a, b). This completes
the proof.

As example consider the equations
y+y=1+e = and 2"+z2=¢
with a=0. The solutions are

yz]—t—%(e_x-!—sin x—3cosx)
and

z:—é—(e_x—i—sin X—C0s x),
satisfy the conditions y(0)=y»"(0)=2(0)=2"(0)=0 we have

y—z=1—cosx=>0 on [0, oo).
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