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ON GENERALIZED FLOQUET SYSTEMS 1
By H. El-Owaidy and A. A. Zagrout

Abstract: Consider the system (i) #’=Ax. Let @ be its fundamental matrix
solution. If there is @ >0 such that A(¢+w)—A(t) commutes with @ for all ¢,
then we call this system a “generalized” Floquet system or a “G.F. system”. We
show that A(f-kw)—A(t)=Blzconstant if and only if A(t)=C+Bll/w—!~Q(I). Q is
periodic of period #>>0. For this A(f) we prove that if all eigenvalues of B,
have negative real parts, then the origin is asumptotically stable. We find a
growth condition for a continuous D(/) which guarantees that all solutions of
Z’=[A()+D(#)]z are bounded if all solutions of the G.F. system (i) are
bounded. Combining the foregoing results yield a class of perturbed G.F.
operators all of whose solutions are bounded.

1. Introduetion

Floquet's theorem states that for the linear system
=A)x, —cot<oo €V

where x is an n-dimensional column vector, A(¢) is n:<n matrix whose elements
arc continuous functions for all ¢, if there exists w>0 such that
At +w)=A(L) ()
for all #, then there exists a nonsingular matrix C such that for all #, the
following equality is valid
Bt +w)=P(L) 3
where @(¢) is any fundamental matrix of system (1). It follows that there
exists a matrix P(¢) and a constant nonsingular matrix R such that for all ¢,

B()=P(t)e"', P(t+w)=P()
The authors (c. f. [1]) considered the case A({+w)#A(t) and used the nota-
tions:

B(t, w)=A{+w)—-AQ@), U, V1=UV-VU

They gave the following definition:

DEFINITION. The system (1) with B(¢, w)=A({+w)—A(t) is called @ gene-
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ralized Floque! system, or G.F. system if there exists w >0, such that
[B(t, w), &(1)] =0, t=(—o0, o0)

They studied the case in which B(#, w)=B,, where B, is a constant matrix.

The general form of A(¢) such that B(Z, w):Bl is
A(®)=C+ (B /udt+Q(1) @

where C and B1 are n<n constant nonsingular matrices and Q(¢#) is a periodic
matrix of period w.

The fundamental matrix ¥ (¢, w) of the system

¥'=B(t, w)y

takes the form ¥(¢, w):exp(Bll).

They proved the following relations:

DL, w)=0(). cxp(Blt). D(w)

o(t -%nw):fﬁ(!)[cb(w)exp[Bl[t-i--(”T"l)- w]]}" (5)

and
P(H—uw)=P(t)exp{Bl[nt+u("T—l)w]] (6)

provided
&(t)=P(t)exp(Rt), [R, B, w)]=0

2. Asymptotic properties

We shall study the properties of the solutions of the system (1) with A(f)=

B
C+ wl t+P(t), and the perturbed system
2(O)=[AD+ D)) x

THEOREM 1. Suppose that x salisfies

x'= (C + —i‘- ¢ +P(t))x. Q)

where C and B, are constant matrices, P 1is periodic with period w and all
eigenvalues of B, have negative real parts. If B, and C commute, thenllim x(t)
—co

=0,
PROOF. Consider the system
B
¥ | 1
z=(c+—tt)z. (8)

The fact that B, and C commute implies that
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d (Cr+ f‘ F CH it‘
R =(c+ ‘)
Hence,
By 2 B,
Ct4+ L1 —l
Z(t)=e 2w = o €)]

is a fundamental matrix of (8). Then,

» By t—gt
zZHZ )= o lz-"}

Let t—s>0. Then,

F(t—s)

1Z&z" i< ) e I

1 P —t ({2 —gY
T (10)

The eigenvalues of B, all have negative real parts imply that any solution %
of #'=(B,/2w)u satisfies liu(a)||=ile(3‘a/ 20\ <Me™*, for some M, >0 and all
a>0, Put a=t—s>>0, we get: g
B s
lle2e ll<M.e
Then, (8) takes the form:
12z (l<e M.e a12)

Let x be a solution of (7) and let z be the solution of (8) such that z(0)=x(0).
Then,

— k(12 —sY)

an

ICli(t—s) —k(1*—s*)

g ~1
x()=2(1)+ f 02 (DPx()ds,

t
=OI<12®I+f 120z OIPOI 15(:)]ds. (13)

From (9) and (11), it follows:
Iz <M 20 lexp [l — k3. (14)
From (12), (13) and (14), we get:

l2@I<Mllz@lexp {Cllt— &) +
! 9 9
+f0MeXpHICII(t—SD}-eXp{—k(t"—s")l {{(p( |x(s)lds,
2 4
lx(®llexp [ICI )+ &) <M|2(0)] + fu Mexp (ICI(—s)+

AT 1p(I x()lds.
Applying the well known result, Gronwall-Bellman inequality, we have
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o Al
le@llexpllCI(—8)+kt) <M z(O)!Ic.\:pUUp(s)ds}. (15)

Let o be the maximum of the periodic function [p(s)|. Then,
2O <M|z(0)llexp lot + | C |t —kt?) (16)
Thus, l]iml‘x(!‘):l =0. This completes the proof.

REMARK. The only place that the periodicity of P was used was when in
going from (15) to (16), we used the fact that P(¢) is bounded. Hence, we
have the more general result:

THEOREM 2. The statement of theorem 1 is valid if we replace P by any
continuous bounded malrix.

REMARK. In this section we used the statement B(f, w)=A(+w)—A() is
independent of ¢ implies

A(D)=C+ Tli—t +P(D)

where C and B are constant matrices and P is periodic with period w. To
prove this statement, let A({) be any smooth matrix such that for some w, we
have
B(t, w)=A({+w)—A() *)
is independent of ¢{. Then, dB(¢{, w)/dt=0. Hence, dA/dt is periodic with
period w. Consider the Fourier series of d4/dt. If we integrate this series, we
get:
A(@)=C+Dt+P(1),

where C and D are constants, P is periodic with period . This and (¥) imply
B({, w)=Dw, and this completes the proof.

Consider the system

¥y =AMy, an
and the corresponding perturbed system
x'=[A@)+D®)] x, (18)

where A4 is defined by (4) and D is a #x<Xn continuous matrix on 0<{ <oo.

Our hypotheses are:

(i) The system (1) is a G.F. system with B(, w)=Bl. where B, is a
constant matrix.

(ii) Each eigenvalue of B, has negative real part and consequently

Bt Rt
le " [<Me
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for some M, k>0 and all {=0.
(iii) The fundamental matrix solution @(¢) of the system (13) and its inverse
are bounded, i.e.,

M,=max (0], M,=max & ')
0<t<w 0<t<w

We will now exploit (5) to make our main applications.

THEOREM 3. If

y=ADy=(C+ L 1+QW)s, an
w
is @ G.F. system and every solution of it is bounded, then every solution of
2= [A)+DD)] x (18)

is bounded also provided

= = (k=D k—1)(k—-2) v
= 161~ lexp{~BE=DE=D p}i[" jexp

—B Gk~ Dall | D(w+Ck—Duwl dv<so, a9

Before proving the theorem we need to prove the following claim:
o 4 )
cLamt. [ e @I 1D()lds <o,

PROOF. Given (>0, let m be an integer such that mw>{. Then,
ko= _om few =
flltﬁ Ol 1D(s)llds=< Ef @ (I [1DCs)]ds. (20)
0 k=1Y (k—Dw

Define a new variable of integration by z=s—(k—1)w, so that (20) takes the
form

n

: w —
[1o7 @I Iplds< = [ 107 @+ G-Dw)]|
0 k r=0

X || DCv+ (k—Dw) | dv. 2D
Since equation (17) is G.F. system, hence (5) and (@, B ]=0 imply

0 o+ k=Dl =0 @) [0G)) ~* M exp(~ B, [(k—1v
+LE=LR=D) ), (22)

By hypothesis lidihl(v)ll is bounded. Hence, if we substitute (22) into the
right member of (21), and then apply (19) the claim is proved.

PROOF OF THEOREM 3. Now, represent the solution of (18) with the initial
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condition x(0)=c by the well known relation
x(f):y(t)+j:¢(t)¢nl(s)D(s)x(s)ds. (23)

where y is the solution of (17) with initial condition y(0)=C. We know that
y is bounded, say |y(#)|| <a. Thus, after taking the norm of both members of
(23) and applying the Gronwall-Bellman lemma, we have:

x®l<a explio@®if 107 @I 1D(s)Ids).

To this inequality, we apply the claim together with the hypothesis that
|®(t)| is bounded. This proves that x(#) is bounded and completes the proof
of the theorem.

THEOREM 4. If all of the eigenvalues of B, have negative real parts, Q has
a period w>0, and (17) is a G.F. system, then, lim y({)=0 for each solution
=00
¥(®) of (17). ’
PROOF. Since the system (17) is a G.F. system and hence (@, 51] =0, then
equation (5) implies
19(t+n)|| <O {@(w) llexpB, [¢+ (n—1w/2] ]} ?
Using hypothesis (ii) we have:
10 +m)| IO (16Cw)| M exp(—k) [t+(n—Dw/2]}".
Let |#(DI=M, for all t=[0, w]. Then, for all {10, w],
10Ct-+m0) | <M 1M M exp(—B)(n—Dw/2)",
Hence, given €>0, there exists N such that 7> N implies ||@(+nw)| <e for
all /=[0, w]. Since w>0, the proof is complete.

COROLLARY. If Q has period w>0, B ,=bU, b<0 and (19) holds, then cvery
solution of (18) is bounded.

PROOF. When B,=0U, system (17) is a G.T. system, hence, theorem implies
every solution of (17) is bounded. We can then apply theorem 2 and the proof
is complete.

Occasionlly, we encounter a system of the form
=AW)x+f(t, x), (24)
where f=C[J % R", R"], J=1[0, o). We assume that
1fCt, ol <a(®lxl. (25)
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where a(?) is a positive function on J, and
[ awar<eo. (26)

THEOREM 5. Assume that the fundamental matrix @ salisfies the hypothesis
(iii) and f(I, x) salisfies (25) and (26).
If y is a solution of (1) with y(tO):xU such that
t]_ig)y(t)zO, then !lj'Tox(t)zo.

PROOF. The proof is similar to that of theorem 3 and so will be omitted.
GENERAL REMARK. Consider the case where B(Z, w) is of the form:
B, w):ENo B! @
where B, i=0,1,2,3,-, N are constant matrices, and such that
[B,(w), A(D]=0, i=0,1,2, (28)

It is easy to prove that, with (27), (28) and theorem 4, the system (1) is a
G.F. system.
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