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ON APPROXIMATIONS TO FLOQUET SYSTEMS

By A.A.S. Zaghrout and A.A. Ragab

Abstract: A linear system ¥=A(f)x, with A(/+w)=A(t) is considered. A step
function approximation of a periodic matrix is constructed. The stability
criteria is discussed.

1. Introduction

In the mathematical formulation a dynamical system subject to periodic
parametric excitation leads to a system of ordinary differential equations with
periodic coefficient. There are many literatures on this subject, see for instance
(1,2,3,4,5]. One basic theory is, of course, that of Floquet’s which says that
the fundamental matrix solution @(¢) of the system

r=A()x, AU+w)=A(), w=ER (1.1)
can be expressed as
O(t)=P)e'", P(t+w)=P(l), PO)=U (1.2)
where R is nonsingular constant matrix, and U is the unit matrix, the actual
determination of @ or R, whether analytically or numerically, is not an easy
matter. Most analytical methods of stability study involve severe approximations

and limitations.
2. Approximations for @(f)

Consider a dynamical system for which the equation of motion has been put
in the following form
() =A() x(t), x(0)=¢, 2.1
where x is n-dimensional vector, A(¢) is an n-by-r matrix periodic in ¢ with
least positive period w, and c is a constant vector. Let &(¢) be the fundamental
matrix of (2.1) such that @(0)=U. Let
B=o(w)-—¢"". (2.2)
The nonsingular matrix B is called monodromy matriz. One has essentially the
stability character of the solutions of (2.1) in hand of one can determine B or
R. 1t is well known that there will be stability if and only if all eigenvalues
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of B have absolute values less than one. The basic idea to approximate ®(Z) is
to divide the period w into # equal and small intervals and to approximate in
cach interval the system (2.1) by piecewise constant system. The approxima-
ting system is constructed in the following manner. Divide each period w into
n intervals by #, i=0,1,2, -, n with 0=¢ <¢, <¢,<-»<t, =w. Denote ith interval
(¢, _;» t,] by =, and its size by 4,=¢,—¢, . In the ith interval replace the coef-
ficient period matrix A(Z) by a constant nonsingular matrix C, which is to have
either the value

C,=A¢), §ex,, (2.3)
or

Cf:ﬁ% ) | Aas. (2.4)
Consider the approximating system

wt:n)=C(tn)y(i;n) (2.5)
with ’

Cltim=L_ ©C,Ift—rw—t, D—fU—ru—t)], (2.6)
r=—co f

where f is the heaviside unit function. The fundamental matrix solution ¥'(¢:n)
for the system (2.5) with ¥(0, »)=U can be written explicitly as:

n—1
T(t;n)=exp(t—t,_C, l_I;[le.\'p;:I,.Ci. tee, . @7

It is easy to show that ¥(¢;n) has the extension property (C.F. [4])

Ut +iwim) =T () (W win)] (2.8)
Equation (2.7) enables us to obtain the monodromy matrix Bl(n)z?ﬁ(w:n) for
the approximating system, i.e.

Bl(n) = f[lexp A‘.C!. . (2.9

Since @(¢) and ¥ () are the fundamental matrices of the systems (2.1) and
(2.5) it follows that
d()=AW)D(L), ©0)=U, (2.10)
T, n)=Ct, m¥(i;n), ¥, n)-U, (2.11)
respectively.

Comparing (2.10) and (2.11) and using the definition of C(¢:;m), (2.6), one
could expect that as the number of the intervals # increases, the solution ¥'(¢;n)
will be a better approximation to @(#) and consequently B, is a better approxi-
mation to B.
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Let
(i) 4= max 4.,
1<i<n $
(ii) @ and @ ' be bounded i.ec.,

1
= 1 =¥ - L 1
z Ui_utg:u!@(l’)l., . OEI:EMH@ (| (2.12)
Now, we are able to prove the following lemma for the limiting case.
LEMMA 1. ¥(t;n)—®(t) as n—oo, 4—0.

PROOF. Consider the difference
D(t;n)=C(, n)—A(L).
The system (2.11) takes the form:
T (t;n) =AW n)+ DA ;m)T (t51). (2.13)
Solving this equation as nonhomogeneous system and by carrying the norm
estimate analysis and using (2.12), we get:

f
1T n) -0 < Umlmg[lD(s:n)li [+ ¥ (s:n) —D(s)|[] ds.

Add m, to both sides and applying Gronwall-Reid-Bellman inequality (5], we
obtain

4
o, + W Em) — 00| <myexp [ mom,| DG, wids). (2.14)

As n—oo (i.e. 4—0), then ¥(¢, n)—>®(t). Thus, we have proved the lemma
for 0<<t<w.

The extension of the lemma to all values of >0 is then made by using the
extension property (2.8) and a similar one satisfied by @(¢). This completes
the proof of the lemma.

REMARK 1. It is clear that in the limiting case (z—co, 4—0), the monodromy
matrix B of the system (2.1) is the limit of the monodromy matrix of the
approximating system (2.5). Also, it is well known that the stability properties
of any periodic system are determined by its monodromy matrix.

Lemma 1 merely says that we can study the stability character of the perio-
dic system (2.1) by studying the approximating system (2.5) as #—oo. In order
for the method of approximation to have any practical value we need to show
that if # is sufficiently large then the systems (2.1) and (2.5) will have certain
stability character in common. Using the definition of D(#;n), the system
(2.10) takes the form:
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®(t)=C(t, n)B{)—D(t, m)P(). (2.15)
Using Floquet theorem, we have

?,If(f;:.1)=Q(i‘;;vz)e”E
The solution of the nonhomogeneous equation (2.15) has the form

q)(z)zQ(xm)e’R’—f;Q(r, n)e

Since the system (2.5) is asymptotically stable, it follows that all its solutions

(’_’)R'Q_[(s;n)D(s:n)dj(S)ds- (2.16)

go to zero as t—oo, i.e.

(i) [lemlﬂgaleuc‘!, for some C,>>0 2. 17)
(i) a,= sup [Q(t, »l, ay= sup Q”'¢t, ml. (2.18)
= 0<i=w <t<w

Now, we are able to prove the following:
THEOREM 1. If the approximating system (2.5) is asymplotically stable, and

4 f ICCs, m)—A()ds <C,/aa.a, (2.19)

then the system (2.1) is esymptotically siable.

PROOF. Using (2.15), (2.17), (2.18) and carrying out the norm estimate
analysis on both sides of (2.16), then, applying Gronwall-Reid-Bellman inequa-
lity we obtain

i
101 <a,a, exp{[ a,2,0,D()lds). (2.20)

y: C,
1f < ID6ds<—g— aag, " then 8)|=0 as t—oo. Thus, all solutions of the
system (2.1) tends to zero as f—oo, and hence the system (2.1) is asymptoti-
cally stable. This completes the proof of the theorem.

Denote e= sup [|D(¢, »n)!. Then, we have a weaker result (which can be

<i<w
proved similarly).

THEOREM 2. If the approximaling system (2.5) is asymplotically stadle and

Cl
E(‘*aaa
1%2%3

then the system (2.1) is asymplolically stable.

Now, we process to discuss the converses of theorems 1 and 2. For this pur-
pose, according to Floquet theorem for system (2.1), let @(¢)= P(t)
Since the system (2.1) is asymptotically stable, it follows
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|8()]1—0 as t—o0
B
@ 16 1<p,e™™, 5,>0, a,>0.
-1
i) b,= sup || v by= P @I
@ii) b, sup PO, b, 0:2:5:“!{ @

I<.w
Consider the fundamental matrix solution ¥'(¢, #) of (2.11). Then, by carrying
out a norm estimate analysis on ¥({;2) similar to that given above for @(%),
and applying Gronwall-Reid-Bellman inequality, we can easily prove the
following:

THEOREM 3. If the system (2.1) is asympiotically stable and
—}-j: ICGs, m)— A ds<a,/bbp,

then the approximating system (2.6) is asymplotically stable.

THEOREM 4. If the system (2.1) is asymptotically stable and

e<a,/bbb,

then the approximating system (2.5) is asymplotically stable.

REMARK 2. It is clear that we have established the validity of this approxi-
mate method of replacing a general periodic A(#) by a piecewise constant

function. For an arbitrary A(Z) might be difficult to ascertain the stability of
(2.1), but replacing an approximating system is easy to deal with.

REMARK 3. The approximation method used above requires the evaluation of
the matrices exp 4,C, in B (#) as shown in (2.9) which is for higher order
system is long and tedious.
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