This study formulates a new geometric parameterization scheme to effectively address numerical analysis subject to the variation of the fiber radius of a square unit cell. In particular, the proposed mesh-morphing approach may lead to a parameterized weak form whose bilinear and linear forms are affine in the geometric parameter of interest, i.e. the fiber radius. As a result, we may certify the reduced basis analysis of a square unit cell model for any parameters in a predetermined parameter domain with a rigorous a posteriori error bound. To demonstrate the utility of the proposed geometric parameterization, we consider a two-dimensional, steady-state heat conduction analysis dependent on two parameters: a fiber radius and a thermal conductivity. For rapid yet rigorous a posteriori error evaluation, we estimate a lower bound of a coercivity constant via the min-θ method as well as the successive constraint method. Compared to the corresponding finite element analysis, the constructed reduced basis analysis may yield nearly the same solution at a computational speed about 29 times faster on average. In conclusion, the proposed geometric parameterization scheme is conducive for accurate yet efficient reduced basis analysis.