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ABSTRACT. The prey–predator model is one of the most influential mathematical models in
ecology and evolutionary biology. In this study, we considered a modified prey–predator model,
which describes the rate of change for each species. The effects of modifications to the classical
prey–predator model are investigated here. The conditions required for the existence of the first
integral and the stability of the fixed points are studied. In particular, it is shown that the first
integral exists only for a subset of the model parameters, and the phase portraits around the fixed
points exhibit physically relevant phenomena over a wide range of the parameter space. The
results show that adding coupling terms to the classical model widely expands the dynamics
with great potential for applicability in real-world phenomena.

1. INTRODUCTION

The prey-predator system was first introduced by Lotka in 1920 as a model to analyze prey-
predator interactions in biology [1]; it was later applied by Volterra to treat similar problems
in ecology [2]. This model describes a theoretical phenomenon in which the population of
one species decreases as the population of the another species increases. References. [3, 4]
describe in depth the significance of the classic model.

However, in the natural world, while there exist cases in which populations change at a
slowly, there are also cases where a population will suddenly become extinct or increase due to
the influence of the environment. For example, additional food for a predator can cause a fear
effect of the predator on the prey, and thus reduce reproduction rate of the prey.

Recently, there has been a considerable progress in the study of the prey-predator system
with the fear effect [5]. It has been found that the costs of anti-predator behavior induced by the
fear effect significantly affects the population of the prey species [6, 7]. The fear effect induces
various changes, including habitat changes, hunting, and increased caution, which leads to a

Received November 15 2021; Revised December 17 2021; Accepted in revised form December 20 2021; Pub-
lished online December 25 2021.

2000 Mathematics Subject Classification. 92D25, 34C60, 93C10, 34D10.
Key words and phrases. Modified prey-predator model, Mathematical biology, Coupled rates of change, Stabil-

ity analysis.
†Corresponding author.

312



A MODIFIED PREY-PREDATOR MODEL WITH COUPLED RATES OF CHANGE 313

reduction in reproduction rate of the prey [8]. In this work, we consider the fear effect when the
predator is provided with additional food. Additional food for the predator causes an increase
in the predator population, and eventually this causes a decrease in the prey population [5, 9].
By modifying the prey–predator model, we consider large and/or rapid changes in species,
which reflect the environmental factors in the real world. We achieve this by adding a term
encoding information regarding the rate of change of the population to the classical model, and
we study the difference between this modified model and the classical model.

The objective of our work is to study the behaviors of the modified prey–predator model and
establish the effects of several parameters that play an important role in the model. We also
analyze the stability behavior of fixed points. We find that while the original model represents
closed curves, the modified model represents open curves or spiral dynamics around the fixed
points. It is possible to understand the difference between the classical and modified models
through the existence condition of the first integral and the existence of fixed point which were
not present before.

The remainder of this paper is organized as follows:
In section 2, the stability of the classical model is discussed. Section 3 introduces the modified
model (3.1) and its first integral. The stability behavior of the modified model is analyzed in
section 4.

2. THE CLASSICAL PREY-PREDATOR MODEL

The original prey-predator model is described by the following system of differential equa-
tions, where x and y are the populations of prey and predator, respectively.

Mold :

{
x′ = αx− βxy,
y′ = δxy − γy

(2.1)

The parameters α, β, δ, γ are positive constants and the primes denote time derivatives. From
Eq. (2.1), we can immediately obtain the following:

dy

dx
= −y

x

δx− γ
βy − α

(2.2)

After modifying Eq. (2.2) to the following variable-separated form, we obtain,

βy − α
y

dy +
δx− γ
x

dx = 0,

Thus, we can obtain the first integral V of the model Mold:

V = δx− γ lnx+ βy − α ln y.

We consider the fixed points of the system Mold, which can be obtained by solving the
following expressions: {

x(α− βy) = 0

−y(γ − δx) = 0
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By solving the above equations, we can immediately obtain the two fixed points of Mold, these
are found to be at (0, 0) and

(
γ
δ ,

α
β

)
. Next, we investigate the stability of the fixed points. We

note that the Jacobian matrix J of the system Mold is given by,

J(x, y) =

[
α− βy −βx
δy δx− γ

]
.

For the fixed point at (0, 0), the Jacobian matrix is given by:

J(0, 0) =

[
α 0
0 −γ

]
,

which implies that this fixed point is hyperbolic, since one real eigenvalue α is positive and the
other one −γ is negative, i.e., it is a saddle point.

In the case of the other fixed point at (γδ ,
α
β ), the Jacobian matrix is given by,

J

(
γ

δ
,
α

β

)
=

[
0 −βγ

δ
αδ
β 0

]
,

The eigenvalues of this matrix can be obtained as ±i√αγ, which indicates that this system
behaves periodically, acting as an oscillator.

3. FIRST INTEGRAL OF THE MODIFIED MODEL

The previous model has a limitation in that it cannot explain some of the phenomena ob-
served in nature. For this reason, we consider an extension of this model. We aim to consider
cases in which the two populations increase and decrease rapidly, as well as the slower vari-
ation that are captured in the original model. The following equations represent the modified
prey–predator model, which link the rate of changes in the populations of the two species:

Mnew :

{
x′ = αx− βxy + εxy′,

y′ = δxy − γy + λx′y,
(3.1)

where the parameters α, β, γ and δ are positive constants as before, whereas the new parameters
ε and λ are arbitrary nonzero ones. We also consider the case in which the coupling effect of
the rate of changes in the populations completely replaces that of the coupling terms of the
previous model (i.e. β = δ=0). Additionally note that the sign of parameter ε indicates that
increases (decreases) in y′ induces decreases (increases) in x′.
Rearranging Eq. (3.1), and assuming 1− ελxy 6= 0, we obtain,

M∗new :


x′ =

αx− βxy + εδx2y − εγxy
1− ελxy

,

y′ =
δxy − γy + αλxy − βλxy2

1− ελxy
.

(3.2)

The possible phase portraits for several cases of ε and λ are shown in Fig. 1.
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(a) ε = λ = 0 (Classical model)
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(b) ε = −0.001, λ = 0.001
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(c) ε = −0.01, λ = 0.01
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(d) ε = −0.1, λ = 0.1

FIGURE 1. Phase plots of the system described by Eq. (3.1) for various values
of the new parameters ε and λ at α = 0.1, β = 0.01, δ = 0.02 and γ = 0.1.

Here, we consider the first integral of the modified system M∗new. From Eq. (3.2), we obtain

dy

dx
=
δxy − γy + αλxy − βλxy2

αx− βxy + εδx2y − εγxy
=
y(δx− γ + αλx− βλxy)
x(α− βy + εδxy − εγxy)

, i.e.

− δx− γ + αλx− βλxy
x

dx+
α− βy + εδxy − εγy

y
dy = 0. (3.3)

Since this equation is not in the variable-separated form, it is not trivial to obtain the first
integral of this system. Thus, we consider the conditions in which the first integral exists.

Theorem 3.1. For the modified prey-predator system of the system M∗new, if βλ − εδ = 0, the
first integral exists.

Proof. Let V (x, y) be the first integral of the system M∗new. ∂V∂x dx+
∂V
∂y dy = 0 must be satisfied

along each solution curve that satisfies Eq. (3.2). Comparing this with Eq. (3.3), we assume
that there exists a function V satisfying
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∂V

∂x
= −αλ+ βλy − δ + γ

x
(3.4)

∂V

∂y
=
α

y
− β + εδx− εγ

We set V = F + C(x), where C(x) is an arbitrary differentiable function and

F =

∫
∂V

∂y
dy =

∫ (
α

y
− β + εδx− εγ

)
dy = α ln y − βy + εδxy − εγy,

thus, V = α ln y − βy + εδxy − εγy + C(x). Then, by comparing the partial derivative of V
with respect to x and using Eq. (3.4), we obtain

∂V

∂x
= εδy + C ′(x)

= −αλ+ βλy − δ + γ

x
.

Thus, it must hold that

(βλ− εδ)y = 0 and C ′(x) = −αλ− δ + γ

x
.

Therefore, since βλ − εδ = 0, we can obtain the first integral V of the system M∗new which is
given by,

V = α ln y − βy + εδxy − εγy − (αλ+ δ)x+ γ lnx. (3.5)

�

From Theorem 3.1, we see that, even though we have perturbed the original prey-predator
model by coupling the rates of change of the populations, if the ratio of this couplings satisfies
β
δ = ε

λ , the first integral exists in the modified system. (See Fig. 2.) However, in the singular
case of β = δ = 0, as shown in Fig. 3, the topological properties of the solution curves in the
modified system are significantly different from those of the original model, even though the
first integral of the modified system exists.

In addition, for a given pair of positive parameters β and δ, considering λ = δ
β ε, , we see

that if ε < 0, λ > 0, the existence of the first integral cannot be guaranteed; this signifies that
the sign of the parameters ε and λ has an important role in guaranteeing the existence of the
first integral. If ε · λ > 0 (i.e. ε and λ have the same sign), we see that the first integral of the
modified system exists whenever λ = δ

β ε. However, we note that, even in these well-behaved
cases, in order for the dynamics of the modified system to have physical sense, interpretations
of the signs of the new parameters must be obtained. For example, when ε > 0 as shown in
Fig. 2, we can assume that the rate of change in the population of the prey exhibits an additional
reaction (on top of that described by the original model) with the same sign to the change
in population of the predator. Thus, when considering the most simple unilateral predator-
prey relationship, excluding cooperation, competition, or reversible predator-prey relationship
between two groups, it is natural to say that the population change of the predator affects the
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FIGURE 2. Level curves of the first integrals for ε > 0. The parameters used
in this plot are α = 0.1, β = 0.01, δ = 0.02, γ = 0.1, ε = 0.005 and λ =
0.01; these parameters satisfy the condition βλ− εδ = 0.

population change of the prey in the opposite direction, (an increase (decrease) in the predator
population causes a decrease (increase) in the prey population), and the population change of
the prey affects the population change of the predator in the same direction. For this reason, in
this paper, we focus predominantly on the case of ε < 0 and λ > 0.

The following corollary illustrates what happens in the modified system when the original
coupling terms are set to zero (β = δ = 0) while retaining the new coupling terms of the
modified system; understanding this dynamics helps explain the effects of the new coupling
terms.

Corollary 3.2. When β = δ = 0, if ε < 0 and λ > 0, there exists no fixed points of the system
M∗new, other than the trivial fixed point at (0, 0).

Proof. Suppose that β = δ = 0. Then the system M∗new can simplified into the following
equations:

x′ =
αx− εγxy
1− ελxy

, y′ =
−γy + αλxy

1− ελxy
(3.6)

In order to find the fixed points, we need to find the values of (x, y) that satisfies:

x(α− εγy) = 0 and y(αλx− γ) = 0;

these expressions lead to the following 4 cases:
(i) x = 0 and y = 0, (ii) x = 0 and αλx− γ = 0,
(iii) y = 0 and α− εγy = 0, (iv) x = γ

αλ and y = α
εγ .

Recall that γ and α are positive in the original predator-prey model, which means that (ii)
and (iii) cases cannot be satisfied. Furthermore, since the population of species x = γ

αλ and
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y = α
εγ must be non-negative, case (iv) is not realizable. Thus, only the first case holds, i.e.,

there exists only the trivial fixed point (0, 0).
�

Note that, by Theorem 3.1 and Eq. (3.5), this modified system (β = δ = 0) has the first
integral V given by V = α ln y − εγy − αλx + γ lnx. In addition, by Corollary 3.2, this
system has no fixed point in the first quadrant of R2 (i.e., x > 0, y > 0). These two properties
imply that this new system has no periodic solutions, that is, all the periodic solutions in the
original predator-prey model disappear, and since

dy

dx
=
αλ− γ

x
α
y − εγ

,

all the solution curves of this new system are oblique curves similar to y = 1
x with a slight

deformation such that they have one critical point, as shown in Fig. 3.
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FIGURE 3. Level curves of the first integrals for β = δ = 0, ε < 0 and λ > 0.
The parameters used in this plot are α = γ = 0.1, ε = −0.01, and λ = 0.01;

Next, we consider the following equations which are equivalent to the system Mnew:{
x′ = αx− x(βy − εy′),
y′ = (δx+ λx′)y − γy

(3.7)

Comparing these equations with Eq. (2.1), we see that the modified system Mnew is a model
obtained from the original predator-prey model, Mold, by adding additional coupling terms of
the population change rates to those of the original model. Thus, the systems given by Eq. (2.1)
and Eq. (3.6) are the two extremes of the modified model considered here. The question thus
arises, how different are the dynamics of the new model given by Eq. (3.7) from those of the
original predator-prey model? This is the subject of the next section.
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4. STABILITY OF THE MODIFIED PREY-PREDATOR MODEL

In the previous section, we added additional coupling terms describing a dependence on the
population change rates to the original predator-prey model, and we observed what changes
occur in the dynamics of the modified model in some extreme cases. Here, we focus on the
changes in the fixed points and their properties, and we consider what happens in the modified
model over a wider range of model parameters.

We first examine the fixed points of the modified model. From Eq. (3.7), we see that, in
order to obtain the fixed points, the following equations must be satisfied:{

x(α− βy + εδxy − εγy) = 0

y(δx− γ + αλx− βλxy) = 0
(4.1)

From Eq. (4.1), we immediately see that (0, 0) is also the trivial fixed point of the modified
model. Next, rearranging Eq. (4.1) to{

x((α− βy) + εy(δx− γ)) = 0

y((δx− γ) + λx(α− βy)) = 0,

we find an additional fixed point at (γδ ,
α
β ), this signifies that the non-trivial fixed point of

the original model is retained in the modified model. That is, the additional coupling of the
population change rates does not remove the non-trivial fixed point of the original model.

To obtain other possible fixed points, we consider the following equations:

α− βy + εδxy − εγy = 0 (4.2)
δx− γ + αλx− βλxy = 0. (4.3)

By multiplying Eqs. (4.2) and (4.3) by βλ and εδ respectively, we obtain

αβλ− β2λy + εδβλxy − βεγλy = 0 (4.4)

εδ2x− γεδ + αεδλx− εδβλxy = 0. (4.5)

Here, adding Eqs. (4.4) and (4.5), we obtain

(αβλ− γεδ) + εδ(δ + αλ)x− βλ(β + εγ)y = 0,

i.e.,

y =
(αβλ− γεδ) + εδ(δ + αλ)x

βλ(β + εγ)
. (4.6)

Next, by substituting Eq. (4.6) into Eq. (4.3), we obtain an expression that must be satisfied by
any remaining fixed points:

δx− γ + αλx− (αβλ− γεδ)x+ εδ(δ + αλ)x2

β + εγ
= 0,

i.e.,

δ(β + εγ)x− γ(β + εγ) + αλ(β + εγ)x− (αβλ− γεδ)x− εδ(δ + αλ)x2 = 0. (4.7)
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From Eq. (4.7), we obtain,

(ε(δ + αλ)x− β − γε)(δx− γ) = 0.

Consequently, we obtain two fixed points; ( β+γε
ε(δ+αλ) ,

αλ+δ
λ(β+εγ)) and (γδ ,

α
β ); one is the nontrivial

fixed point of the original model and the other is a new fixed point. Then here, note that it is
required that another constraint (β+ εγ) < 0, for the x-coordinate value of the new fixed point
to be positive, to make sense, if ε < 0 and λ > 0. However, in this case, the y-coordinate value
of the new fixed point is negative, which means that the first fixed point ( β+γε

ε(δ+αλ) ,
αλ+δ
λ(β+εγ)) can

not be involved in the domain of nontrivial fixed points. Therefore, when ε < 0 and λ > 0, our
modified model has only one nontrivial fixed point (γδ ,

α
β ) that is the same one as in the original

model:

Theorem 4.1. The modified prey-predator model M∗new formally has three fixed points. If ε < 0
and λ > 0, there exists only one non-trivial fixed point, which is the same one as in the original
prey-predator model Mold.

Remark 4.2. On the other hand, if we can find some specific phenomena with ε > 0 to which
our modified model can be applied, we can obtain one more fixed point fs = ( β+γε

ε(δ+αλ) ,
αλ+δ
λ(β+εγ)).

Of course, we can consider the other cases: ε > 0 and λ < 0; ε > 0 and λ > 0; ε < 0 and
λ < 0. However, even though these all are expected to show interesting dynamics, the most
important key is to discover real objects and their interactions that meet those conditions. We
focus on the closest extended model (ε < 0 and λ > 0) to the original one, in the sense that the
predation-prey relationship in coupling term is maintained in the same way as before. More-
over, the new fixed point fs = ( β+γε

ε(δ+αλ) ,
αλ+δ
λ(β+εγ)) has one more serious problem: Even though

fs is included in the first quadrant of the xy-plane, fs is a singular point to make the system
defined by Eq. (3.2) singular, since (1− ελxy)|fs = 0, which means that we can not handle the
dynamics near fs directly by Eq. (3.2) in that case.

Next, we analyze the stability of the fixed points in the modified model M∗new. First, we note
that, from Eq. (3.2), the Jacobian matrix J of our modified model is given by,

J(x, y) =

[
α−βy−εγy+2εδxy−ε2δλx2y2

(1−ελxy)2
αελx2+εδx2−βx−εγx

(1−ελxy)2
δy+αλy−βλy2−εγλy2

(1−ελxy)2
δx+αλx−γ−2βλxy+βελ2x2y2

(1−ελxy)2

]
.

So, in the case of the trivial fixed point at (0, 0), we have

J(0, 0) =

[
α 0
0 −γ

]
,

which indicates that the fixed point at (0, 0) is hyperbolic, since J has two real eigenvalues:
one is positive (α > 0) and the other is negative (η2 = −γ < 0), which are exactly the same as
in the original model.
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In the case of the other fixed point at (γδ ,
α
β ), the Jacobian matrix of the modified model at

this point is given by:

J

(
γ

δ
,
α

β

)
=

β2δ2

(βδ − αεγλ)2

[
αεγ(βδ−αεγλ)

β2δ
γ(αεγλ−βδ)

δ2
α(βδ−αεγλ)

β2
αγλ(αεγλ−βδ)

βδ2

]

=
1

βδ − αεγλ

[
αεγδ −β2γ
αδ2 −αβγλ

]
. (4.8)

From Eq. (4.8), we obtain the characteristic equation of J as follows:

p(η) =

(
αεγδ

βδ − αεγλ
− η
)(

−αβγλ
βδ − αεγλ

− η
)
+

αγβ2δ2

(βδ − αεγλ)2
= 0,

i.e. (βδ − αεγλ)η2 − αγ(εδ − βλ)η + αγβδ = 0.

Solving the above equation, we obtain the two eigenvalues of J
(
γ
δ ,

α
β

)
as,

η =
αγ(εδ − βλ)±

√
α2γ2(εδ − βλ)2 − 4αγβδ(βδ − αεγλ)

2(βδ − αεγλ)
. (4.9)

Here, we introduce three new parameters as follows for the convenience of further discussion:

A = αγ(εδ − βλ), B = α2γ2(εδ − βλ)2 − 4αγβδ(βδ − αεγλ), and C = βδ − αεγλ.

The eigenvalues in Eq. (4.9) can then be expressed in a simplified form:

η1 =
A−
√
B

2C
, η2 =

A+
√
B

2C
.

Here, we investigate the stability of the non-trivial fixed point at (γδ ,
α
β ). Thus, in summary,

we can obtain the following theorem, which indicates how the stability of this non-trivial fixed
point is determined by selecting the parameters, ε and λ, in the ελ-parameter space.

Theorem 4.3. The fixed point at (γδ ,
α
β ) is stable, if ε < 0 and λ > 0.

Proof. In this section, we previously established the permissible ranges of the parameters ε and
λ as ε < 0 and λ > 0. Thus, it is clear that C = βδ − αεγλ > 0 and A = αγ(εδ − βλ) < 0.
Then we consider the case of B > 0,

A2 −B = (αγ(εδ − βλ))2 − α2γ2(εδ − βλ)2 + 4αγβδ(βδ − αεγλ)
= 4αγβδ(βδ − αγελ) > 0 for ε < 0 and λ > 0.

Also, in the case of B < 0, since the imaginary number
√
B contributes only to the rotation of

the solution trajectories, the stability of the eigenvalue depends entirely on the sign of A. Since
A < 0, we see that the fixed point is also stable. �
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Figure 4 clearly illustrates the possible dynamics discussed in Theorem 4.3. From Fig. 4, we
see that, although the non-trivial fixed point of the original prey-predator model is maintained,
its character is significantly altered by the newly added parameters. As stated in Theorem 4.3,
by selecting various values for ε and λ, the characteristics of the fixed point that was the center
of the original model can change; in this modified model one can be observed for sinks, sources,
or centers: For example, Fig. 4 (a) shows a case in which the fixed point becomes unstable due
to the addition of the extra coupling terms. In the case of Fig. 4 (b), in contrast with the case
shown in Fig. 4 (a), the fixed point becomes unstable as a result of the additional coupling
terms.
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FIGURE 4. Possible phase portraits in the case of ε < 0 and λ > 0 near the
fixed point (γδ ,

α
β ): (a) non-spiral sink when B > 0 and (b) spiral sink when

B < 0. For more details, see Fig. 5 (a)

Next, by applying Theorem 4.3, we analyze the dynamics of the modified model, according
to the parameter selection on the ελ-plane for a fixed set of parameters α, β, δ and γ. First,
we obtain Fig. 5 (a) which shows the partitioned regions representing the possible cases for the
stability of the eigenvalues of the Jacobian matrix at the non-trivial fixed point. The partitioned
regions are first determined, according to the criteria of A = 0 and B = 0 (i.e. εδ + βλ =

±2 βδ√
αγ ) given as follows:

P1 =
{
(ε, λ)

∣∣∣ A < 0 and B > 0 with εδ + βλ < −2 βδ√
αγ

}
,

P2 =
{
(ε, λ)

∣∣∣ A < 0 and B < 0
(
−2 βδ√

αγ < εδ + βλ < 2 βδ√
αγ

) }
,

P3 =
{
(ε, λ)

∣∣∣ A < 0 and B > 0 with εδ + βλ > 2 βδ√
αγ

}
.

Second, according to the additional criterion of A2 − B = 0, we complete the fully par-
titioned regions as shown in Fig. 5 (b). Here recall that A2 − B = 4αγβδ(βδ − αγελ).
The additionally partitioned regions with hyperbolic fixed points cannot appear in the second
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FIGURE 5. Parameter space partitioned according to the dynamics for values
of ε and λ: (a) Phase space partition when ε < 0 and λ > 0 (the 2 black
dots denote the 2 cases shown in Fig. 4), (b) Full phase space partition, for
α = 0.1, β = 0.01, δ = 0.02 and γ = 0.1 where the red, green and blue line
represents A = 0, A2 −B = 0 and B = 0, respectively.

quadrant of the ελ-plane, since A2 > B and A < 0 (i.e., all the signs of the eigenvalues are
negative), as shown in Fig. 5 (a). Consequently, in the case of ε < 0 and λ > 0, there exist only
three possible regions, which show two distinct dynamics: One is the dynamics characterized
by non-spiral sink behavior and the other is that of a spiral sink behavior, as shown in Fig. 4.

On the other hand, if the signs of ε and λ change, we have to consider the criterion curves
satisfying the conditions, βδ − αγελ = 0 (i.e., A2 − B = 0 ) and εδ − βλ = 0 (i.e. A = 0).
Since they may appear in the first and third quadrant in the ελ-plane. (For more details, see
Fig. 5 (b); these conditions are met by the green and red curves, respectively, in the figure.)
Finally, we consider the behavior that occurs for other signs of ε and λ. We have previously
shown that, if ε and λ have different signs, there exists one more non-trivial but singular fixed
point fs. To consider the dynamics near this non-trivial fixed point in such a model, we need to
establish the stability of fs. As stated in the previous section, fs is a singular point of the system
described in Eq. (3.2), thus we cannot obtain the Jacobian matrix J at fs; this strongly implies
that the dynamics near fs are singular. We also note that the characteristics of the existing fixed
point can change: For example, when we select the parameters ε = 4 and λ = 4 in the first
quadrant as shown in Fig. 5 (b), the fixed point changes from being stable to being a hyperbolic
fixed point, as shown in Fig. 6 (b); as the parameters move from the second quadrant to the
partitioned region, including (4, 4) in the first quadrant, A > 0 B > 0, and A2 < B are
all satisfied. These observations suggest that, when the signs of ε and λ vary, the dynamics
might change in a non-trivial manner. To confirm this, we observe numerically what happens
near the point fs. Figure 6 demonstrates this non-trivial behavior: While the fixed point at
(0, 0) is still hyperbolic, the fixed point at (γδ ,

α
β ), which was also present in the original model

Mold, suddenly becomes hyperbolic and, in addition, another singular fixed point at fs appears.
Together, these features are likely to create very complex dynamics. We also note that the
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singular fixed point fs is situated on the singular curve

y =

(
1

ελ

)
1

x
,

on which the system given by Eq. (3.2) becomes singular. In Fig. 6 (a), the region of the green
curve above fs appears to be an unstable manifold, while the lower region appears to be a stable
manifold, and the point fs looks like the center in the original prey-predator model. However,
from Fig. 7, we can see that, in fact, on this curve, intense repelling-and-attracting behavior is
taking place near the curve, which strongly supports the hypothesis that there might by highly
non-trivial dynamics in this region. Therefore, based on these observations, it is suggested that
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)
FIGURE 6. Phase portrait near the non-singular fixed points when ε = 4 and
λ = 4, with α = 0.1, β = 0.01, δ = 0.02 and γ = 0.1. The arrows describing
the vector field are represented by unit vectors to identifying the directions of
tangent vectors.

the emergence of the additional singular fixed point and the singular curve exerts significant
influences on the dynamics observed at the existing non-trivial fixed point at

(
γ
δ ,

α
β

)
, and

creates several interesting phenomena, as shown Figs. 6 and 7. This remains an interesting
subject for further works.

5. CONCLUSION

In this paper, we have analyzed the effect of the additional terms in the modified prey-
predator model given in Eq. (3.1) by analyzing the first integral of the system. We find that the
first integral, which always exists in the classical model, exists only on a specific straight line
on the ελ-plane in the modified model. By considering stability, a variety of cases for the fixed
points have been investigated.

As a future work, it is of interest to consider the behavior of the system that is not on the
straight line λ = δ

β ε; these behaviors can be inferred using the Lyapnov function.
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FIGURE 7. Real phase portrait near the singular curve: y = 1
ελ

1
x , for ε = 4

and λ = 4, with α = 0.1, β = 0.01, δ = 0.02, γ = 0.1. The arrows denote the
tangent vectors with the real magnitudes given by the considering vector field.

In the modified model, many interesting phenomena were found; this work has opened the
path for further research with the possibility of discovering novel behavior of the modified sys-
tem. Furthermore, motivated by recent research [10, 11, 12], stochastic differential equations
can be added to this model, which can explain the stochastic influences of environment. By
applying the stochastic differential equations to our model, we will be able to model environ-
mental fluctuations and/or noise that cannot be modeled in a deterministic model.
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