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ABSTRACT. This paper introduces mono-implicit general linear methods, a special class of
general linear methods, which are implicit in the output solution for the numerical integration
of differential algebraic equations. We show how L-stable inherent Runge-Kutta members can
be derived. The procedures for implementation have been discussed. The numerical test on
the problem considered shows that the methods have improved accuracy when compared to
RADAU IIA and the results from MATLAB ode15s, which have been taken as our reference
solution.

1. INTRODUCTION

Differential algebraic equations are equations involving unknown functions and their deriva-
tives in an implicit way. The autonomous general form of a differential algebraic system of
equation is the implicit differential equation [1]

F (y′(x), y(x)) = 0, y(x0) = y0, (1.1)

where F : Rm × Rm → Rm, y ∈ Rm and ∂F
∂y′ may be singular.

Definition 1.1. The DAE (1.1) has differentiation index k, if k is the minimal number of
analytical differentiations

F (y′, y) = 0,
d

dx
F (y′, y) = 0, · · · , d

k

dxk
F (y′, y) = 0, (1.2)

such that (1.2) allow us to extract through algebraic manipulations an explicit ordinary differ-
ential system y′ = f(y(x)).
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In this paper, we are interested in the development of first same as last (FSAL) general linear
methods (GLMs) in Nordsieck form with inherent Runge-Kutta stability for the numerical
solution of DAEs of index-1

y′ = f(y, z)
0 = g(y, z),

(1.3)

with initial conditions g(y0, z0) = 0; y0 = a; z0 = b and ∂g
∂z is non-singular, and index-2

y′ = f(y, z)
0 = g(y),

(1.4)

having initial conditions g(y0) = 0; gy(y0)f(y0, z0) = 0; y0 = a; z0 = b, where f and g
are assured to be smooth and ∂g

∂y
∂f
∂z is non-singular. Here, the solution of the DAE (1.4) must

satisfy the equation

0 =
∂g

∂z
f(y, z).

General linear methods were first proposed by [2] as a unifying framework for studying con-
sistency, convergence and stability of Runge-Kutta and linear multistep methods (LMMs) [3].
A class of GLM called Diagonally Implicit Multistage Integration Methods (DIMSIMs) intro-
duced by Butcher in [4] have gained popular interest. DIMSIMs have been constructed and
presented as type 1, 2, 3 and 4 in [4] among others, with the implementation procedures dis-
cussed in [5, 6]. Second derivative GLMs have also been developed by several authors, some
of which includes [7, 8, 9]. Recently, [10] introduced a new family of GLMs with strong reg-
ularity property. In implementing numerical methods, Nordsieck vectors were first introduced
by Nordsieck in [11] to implement the Adams methods, [12] used this Nordsieck vector in the
code DIFSUB for the solution of ODEs. This has also been applied to GLMs (see [13]).
Implicit Runge-Kutta methods (RKMs) have been known to have good stability properties (that
is, having wide region of stability) as compared to the linear multistep methods, which is in-
hibited by the Dahlquist order barrier [14]; this has been the motivation for constructing GLMs
with Runge-Kutta Stabiliy (i.e. GLMs having same stability domains equivalent to RKMs).
Further to this, the desire to create a matrix structure of GLMs having Runge-Kutta stabil-
ity properties gave rise to methods with inherent Runge-Kutta stability. GLMs having this
property was introduced in [15], and several authors have developed GLMs having inherent
Runge-Kutta stability, some of which include the works of [3, 16, 17, 18, 19].

2. FSAL MONO-IMPLICIT NORDSIECK GLMS WITH INHERENT RUNGE-KUTTA
STABILITY

For the numerical integration of (1.1), we consider the general linear methods in Nordsieck
form defined as

Y = h(A⊗ I)F + (U ⊗ I)y[n−1]

y[n] = h(B ⊗ I)F + (V ⊗ I)y[n−1],
(2.1)
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n = 1, 2, ..., N , h is the step size, and

Y =


Y1
Y2
Y3
...
Ys

 ; F =


f(Y1)
f(Y2)
f(Y3)

...
f(Ys)

 ; y[n] =


y
[n]
1

y
[n]
2

y
[n]
3
...

y
[n]
p+1

 =


yn+1

hy′n+1

h2y′′n+1
...

hpy
(p)
n+1

 ≈


y(xn+1)
hy′(xn+1)
h2y′′(xn+1)

...
hpy(p)(xn+1)

 ,

with xn+1 = xn + h, Yi = yn+ci ≈ y(xn + cih), Fi = fn+ci ≈ y′(xn + cih); i = 1(1)s.
Here, ci is chosen as ci = i

s , and I is the s× s identity matrix, where s is the number of stages.
The matrices U, V have the form

U =



1 u12 u13 · · · u1(s−1) u1s
1 u22 u23 · · · u2(s−1) u2s
1 u32 u33 · · · u3(s−1) u3s
...

...
...

. . .
...

...
1 u(s−1)2 u(s−1)3 · · · u(s−1)(s−1) u(s−1)s
1 us2 us3 · · · us(s−1) uss


,

V =



1 us2 us3 · · · us(s−1) uss
0 0 0 · · · 0 0
0 v32 0 · · · 0 0
...

...
...

. . .
...

...
0 v(s−1)2 v(s−1)3 · · · 0 0
0 vs2 vs3 · · · vs(s−1) 0


.

Two cases of this new method will be considered, we classify these cases by the structure of A
andB matrices having the form in table 1. The method (2.1) can be represented in the compact
form [

Y

y[n]

]
=

[
A⊗ I U ⊗ I
B ⊗ I V ⊗ I

] [
hF

y[n−1]

]
.

The first same as last (FSAL) property of (2.1) is that the first output solution in y[n] is the
same as the last stage in Y . Here, the first row of matrices B and V is the same as the last row
of matrices A and U respectively (i.e. asi = b1i and usi = v1i, i = 1, 2, ..., s).

This family of method is what we call FSAL Mono-Implicit Nordsieck General Linear Meth-
ods (MiGLMs). The MiGLMs are implicit on the last stage Ys; this has been done to improve
stability as in the case of backward difference formula (BDF) (see [1, 12, 20, 21] and also to
avoid high computational cost as in the case of fully implicit Runge-Kutta methods) (an ex-
ample is the RADAU, Guass and Lobatto RKMs). Another advantage of FSAL MiGLMs is
that they are readily amenable to be stiffly stable [1]. The structure of the A matrix gives the
GLM nature of the nested methods proposed by [22]. The idea of nesting was first proposed by
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[23, 24] by extending the mono-implicit RKMs of [25, 26], where nested implicit Runge-Kutta
formulas based on Gauss quadrature formula were developed. This idea has been extended to
a new way of nesting in the hybrid multistep methods by [22, 27, 28, 29, 30]. In fact, the case
II MiGLM is the nested general linear method (NGLM) proposed by [31] that are implicit in
their stages.

Case Structure of A Structure of B

case I


0 0 · · · 0 a1s
a21 0 · · · 0 a2s
a31 a32 · · · 0 a3s

...
...

. . .
...

...
a(s−1)1 a(s−1)2 · · · 0 a(s−1)s

as1 as2 · · · as(s−1) ass




as1 as2 · · · as(s−1) ass
0 0 · · · 0 1
b31 b32 · · · b3(s−1) b3s

...
...

. . .
...

...
b(s−1)1 b(s−1)2 · · · b(s−1)(s−1) b(s−1)s

bs1 bs2 · · · bs(s−1) bss



case II



λ 0 0 · · · 0 a1s
a21 λ 0 · · · 0 a2s
a31 a32 λ · · · 0 a3s
0 a42 a43 · · · 0 a4s
0 0 a53 · · · 0 a5s
...

...
...

. . .
...

...
0 0 0 · · · λ a(s−1)s

0 0 0 · · · as(s−1) λ





0 0 · · · as(s−1) λ
0 0 · · · 0 1
b31 b32 · · · b3(s−1) b3s
b41 b42 · · · b4(s−1) b4s

...
...

. . .
...

...
b(s−1)1 b(s−1)2 · · · b(s−1)(s−1) b(s−1)s

bs1 bs2 · · · bs(s−1) bss


TABLE 1. Two cases of the FSAL GLM in Nordsieck form; λ ≥ 0

Theorem 2.1. [3, 16, 17, 18] The method (2.1) has order p and stage order q = p, if and only
if

ecz = zAecz + UZ +O(zp+1)

ezZ = zBecz + V Z +O(zp+1), p ≥ 1
(2.2)

where Z = [1, z, z2, · · · zp]T and ecz = [ec1z, ec2z, ec3z, · · · ec1z]T .

Proof. Since the stage order q = p, then the stage values satisfy

Yi = y(xn + cih) +O(hp+1)

= y(xn) + cihy
′(xn) + · · ·+

cpih
p

p!
y(p)(xn) +O(hp+1).

(2.3)

In Nordsieck form, the incoming approximation y[n−1] is

y[n−1] =


y
[n−1]
1

y
[n−1]
2

y
[n−1]
3

...
y
[n−1]
p+1

 =


yn
hy′n
h2y′′n

...
hpy

(p)
n

 ≈


y(xn)
hy′(xn)
h2y′′(xn)

...
hpy(p)(xn)

 .
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Thus, (2.3) can be written as

Y = Cy[n−1] +O(hp+1), (2.4)

where C is given by

C =


1 c1

c21
2! · · ·

cp1
p!

1 c2
c22
2! · · ·

cp2
p!

...
...

...
. . .

...
1 cs

c2s
2! · · ·

cps
p!

 .
For each stage derivative, we have

hf(Yi) = hy′(xn + cih) +O(hp+2)

=

p+1∑
k=1

ck−1i

(k − 1)!
y(k)(xn)hk + +O(hp+2)

=

p∑
k=1

ck−1i

(k − 1)!
y(k)(xn)hk + +O(hp+1),

which can be expressed in matrix form as

hF = CKy[n−1] +O(hp+1), (2.5)

where K is the shifting matrix given by

K =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 .

The output approximation of order p at the step n has the form

y
[n]
j = hjy(j)(xn + h) +O(hp+1), j = 1(1)p, (2.6)

with the incoming approximation having the form

y
[n−1]
j = hj−1y(j−1)(xn) +O(hp+1), j = 1(1)p.

Expanding (2.6) by Taylor series about xn yields

y[n] = Ey[n−1] +O(hp+1), (2.7)
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where

E =


1 1

1!
1
2! · · ·

1
p!

0 1 1
1! · · ·

1
(p−1)!

...
...

...
. . .

...
0 0 0 · · · 1

1!
0 0 0 · · · 1

 ,
substituting (2.3), (2.5) and (2.7) into (2.1) gives

Cy[n−1] = ACKy[n−1] + Uy[n−1] +O(hp+1)

Ey[n−1] = BCKy[n−1] + V y[n−1] +O(hp+1).
(2.8)

Let zk = hky(k)(xn), then y[n−1] can be represented by Z = [1, z, z2, · · · zp]T , therefore,
(2.8) becomes

CZ = ACKZ + UZ +O(zp+1)

EZ = BCKZ + V Z +O(zp+1).
(2.9)

The matrices K,C,E have the properties

KZ = zZ +O(zp+1)

CZ = ecz +O(zp+1)

EZ = ezZ +O(zp+1),

substituting these properties into (2.9), then (2.2) is obtained. �

Equating the coefficients of the powers of z in (2.2), we get
U = C −ACK
V = E −BCK. (2.10)

The stability region of general linear methods for ODEs is determined using the stability matrix

M(z) = V + zB(I − zA)−1U, (2.11)

provided (I − zA)−1 is non-singular. However, in the case of DAEs, the limit of this matrix at
infinity is essential [32], therefore

lim
z→∞

M(z) = M(∞) = V −BA−1U.

When numerical integrators are used at each mesh point, there are differences between the
numerical solution and exact solution, this is the global error. Instability sets in when this error
accumulates and the numerical solution does not converge to the true solution. Sequel to this,
a method must posses a wide region of stability. We therefore give some definitions:

Definition 2.2. [33] For a non-singular (I − zA)−1, the GLM (2.1) is A-stable if the stability
matrix M(z) is a stable matrix for all z ∈ C−.

Definition 2.3. [33] The GLM (2.1) is L-stable if it is A-stable and ρ(M(∞)) = 0 .
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Definition 2.4. [32] The GLM (2.1) is stable at infinity if and only if{
ρ(M(∞)) ≤ 1

∀ w ∈ Sp {M(∞)} , |w| = 1 =⇒ λ is non− defective.

Taking the advantage of the implicit Runge-Kutta method of having good stability properties,
we thus impose this stability condition (RK-stability) on the family of methods to be con-
structed. The stability function of M(z) is defined by

Π(w, z) = det(wI −M(z)). (2.12)

Definition 2.5. [16] If Π(w, z) defined in (2.12) has the special form

Π(w, z) = ws−1(w −R(z))

then the GLM (2.1) is said to possess Runge-Kutta (RK) stability.

The key property of the new family of methods studied in this paper is not just having the ad-
vantages of linear multistep methods and Runge-Kutta methods, but of the property of inherent
Runge-Kutta stability.

Definition 2.6. [18] If the GLM (2.1) satisfies V e1 = e1, then (2.1) has the property of inherent
Runge-Kutta stabiliy if

det(wI − V ) = ws−1(w − 1)

BA ≡ XB
BU ≡ XV − V X,

(2.13)

where the notation ≡ denotes equality of two matrices except for the first row.

The matrix X is the doubly companion matrix [18] defined by,

X =



−α1 −α2 −α3 · · · −αp−1 −αp −αp+1 − βp+1

1 0 0 · · · 0 0 −βp
0 1 0 · · · 0 0 −βp−1
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 −β3
0 0 0 · · · 1 0 −β2
0 0 0 · · · 0 1 −β1


;

where αi and βi are real coefficients. In this article we use the shifting matrix

J =



0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 0
0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0


,
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as a special case of X , following [17].

Theorem 2.7. [17] If (2.1) has the property of inherent Runge-Kutta stability (IRK), then the
stability matrix M(z) and V matrix have a single non-zero eigenvalue, and the stability func-
tion of M(z) has the form

Π(w, z) = ws−1(w −R(z)).

The proof is that of Theorem 3.1 of [16] and Theorem 2.6 of [3]. For the GLM (2.1), V has
only one non-zero eigenvalue which equals 1.

3. FINDING MONO-IMPLICIT GLMS WITH IRK STABILITY

The approach used to derive FSAL mono-implicit GLM (MiGLM) with IRK stability prop-
erties is discussed in this section. As earlier stated in section 2, there are order conditions that
should be satisfied as well as conditions for IRK stability. The approach explained in this sec-
tion has been used to find the coefficients of A,U,B, V of the two classes of FSAL MiGLM
with IRK stability.
Step I. Parameters of the method:

• s: the number of stages. Here, we choose s = p+ 1.
• c: the abscissae vector. Here, we choose ci = i

s ; i = 1(1)s.
• aij and λ: constant coefficients of the A matrix, chosen to achieve desired stability

properties.
Step II. Using the order conditions in equation (2.10), obtain the resulting system of equations.
Step III. In order to ensure that these methods satisfy the IRK stability, set X = J in (2.15)
and obtain the system of equations

BA− JB ≡ 0,

BU − JV + V J ≡ 0.
(3.1)

Step IV. Solve the obtained system of equations from steps II and III to obtain values for other
aij , and uij , bij , vij in terms of the real coefficient(s) aij and λ chosen in step I.
Step V. In order to obtain methods with wide range of stability (e.g. A-stability and L-
stability), values of a1s and λ are chosen to achieve desired results. The approach used to
achieve this, is to use the result in step IV to compute for R(z) (this is done by finding the only
non-zero eigenvalue of M(z)), express as a ratio of two polynomials in the form

R(z) =
N(z)

D(z)
, D(z) 6= 0.

To satisfy L-stability requirement, we ensure that the coefficient of the highest degree of z in
N(z) is zero. That is; for

R(z) =
N(z)

D(z)
=

γ1 + γ2z + γ3z + · · ·+ γs−1z
p

δ1 + δ2z + δ3z + · · ·+ δs−1zp + δszp+1
, p ≥ 1, (3.2)

γs is fixed to be zero.
However, for A-stability, R(z) must satisfy |R(z)| ≤ 1 for all z in the left half of the complex
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plane. Replacing z = iy, then |R(z)| ≤ 1 is equivalent to the E-polynomial greater or equal
to zero [33], where

E(y) = |D(iy)|2 − |N(iy)|2 = D(iy)D(−iy)−N(iy)N(−iy); y ∈ R. (3.3)

Theorem 3.1. (Compare Theorem 351C in [33]) The FSAL MiGLM with IRK stability, having
stability matrix M(z) with only one non-zero eigenvalue given as R(z) = N(z)

D(z) is A-stable, if
and only if

(i) all poles of R(z) are in the right half plane.
(ii) E(y) = D(iy)D(−iy)−N(iy)N(−iy) ≥ 0 for all real y.

By this theorem, the selected aij and λ chosen in step I can be computed.

The FSAL MiGLM with IRK stability that is A-stable and obeys (3.2) is L-stable. This can be
clearly seen. If the FSAL MiGLM with IRK stability has stability matrix M(z) as defined in
(2.11) and if (2.1) posses IRK stability, then the stability matrix M(z) has only one non-zero
eigenvalue R(z). If (2.1) is also L-stable, then R(z) has the form in (3.2), and taking the limit
as z →∞ yields

ρ(M(∞)) = R(∞) = 0.

3.1. Examples of the mono-implicit GLM (2.1). Some example methods (case I and II) are
presented below.
Method s = 2, case I.
Step I For s = 2, p = 1, the A,U,B, V for case I is given as
yn+c1
yn+c2
yn+1

hy′n+1

 =

[
A U
B V

]
hfn+c1
hfn+c2
yn
hy′n

⇒

yn+c1
yn+c2
yn+1

hy′n+1




0 a12 1 u12
a21 a22 1 u22
a21 a22 1 u22
0 1 0 0



hfn+c1
hfn+c2
yn
hy′n

 .
(3.4)

Step II Using the order conditions (2.10) with the abscissae values c1 = 1
2 , c2 = 1, we obtain

u12 =
1

2
− a12,

u22 = 1− a21 − a22.
(3.5)

Step III Using the conditions necessary for IRK stability, it is observed that

BA− JB ≡ 0

BU − JV + V J ≡ 0

with J =

[
0 0
1 0

]
.

Step IV and V Substituting u12 and u22 as obtained from (3.5) into (3.4), the stability matrix
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is given as

M(z) =

[
− za21+1
a12a21z2+a22z−1

−za21+2za12a21+2a21+2a22−2
2(a12a21z2+a22z−1)

− z(za21+1)
a12a21z2+a22z−1

z(−za21+2za12a21+2a21+2a22−2)
2(a12a21z2+a22z−1)

]
,

having the only non-zero eigenvalue

R(z) =
N(z)

D(z)
=

(2a12a21 − a21) z2 + 2a22z − 2z − 2

2 (a12a21z2 + a22z − 1)
.

To achieve L-stability, the coefficient of z2 in N(z) is set to zero, thus letting a12 = 1
2 , R(z)

becomes

R(z) =
N(z)

D(z)
=

2 (a22z − z − 1)

a21z2 + 2a22z − 2
. (3.6)

Also, to ensure A-stability, we replace z = iy in (3.6) and check E-polynomial using (3.3).
The E-polynomial for the method (3.4) is given as

E(y) = a221y
4 + (4a21 + 8a22 − 4) y2 ≥ 0. (3.7)

The (3.7) suggests that forA-stability, a21 and a22 should be chosen such thatE ≥ 0. Therefore
A-stability is achieved whenever a21 ≥ 1− 2a22. Choosing a21 = 1

2 , then a22 ≥ 1
4 .

As an example, choose a21 = 1
2 , a22 = 1

4 , the E-polynomial is

E(y) =
y4

4
> 0, ∀y ∈ R,

with resulting method (3.4) defined as
yn+ 1

2

yn+1

yn+1

hy′n+1

 =


0 1

2 1 0
1
2

1
4 1 1

4
1
2

1
4 1 1

4
0 1 0 0



hfn+ 1

2

hfn+1

yn
hy′n

 . (3.8)

The stability matrix is given as

M(z) =

[
− 2(z+2)
z2+z−4 − 1

z2+z−4
−2z(z+2)
z2+z−4 − z

z2+z−4

]
.

The only non-zero eigenvalue of this GLM (3.8) is

R(z) =
−4− 3z

−4 + z + z2
.

The method (3.8) is L-stable. However, the last stage (same as the output method yn+1) gained
order, to give p = 2.
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Method s = 3, case I.
Step I For s = 3, p = q = 2, the A,U,B, V for case I is given as

Y1
Y2
Y3
yn+1

hy′n+1

h2y′′n+1

 =


0 0 a13 1 u12 u13
a21 0 a23 1 u22 u23
a31 a32 a33 1 u32 u33
a31 a32 a33 1 u32 u33
0 0 1 0 0 0
b31 b32 b33 0 v32 0




hF1

hF2

hF3

yn
hy′n
h2y′′n

 , (3.9)

with Y1 = yn+c1 , Y2 = yn+c2 , Y3 = yn+c3 and F1 = y′n+c1 , F2 = y′n+c2 , F3 = y′n+c3 .
Step II Applying the order conditions in (2.10) with the abscissae values c1 = 1

3 , c2 = 2
3 , c3 =

1, we obtain

a13 + u12 =
1

3
, a13 + u13 =

1

18
, a21 + a23 + u22 =

2

3
,

a21
3

+ a23 + u23 =
2

9
, a31 + a32 + a33 + u32 = 1,

a31
3

+
2a32

3
+ a33 + u33 =

1

2
,

b31 + b32 + b33 + v32 = 0,
b31
3

+
2b32

3
+ b33 = 1.

(3.10)

Step III Using the conditions necessary for IRK stability defined in (3.1), with J =

 0 0 0
1 0 0
0 1 0

,

the system of equations

a21b32 + a31b33 = 0, a32b33 = 0, a13b31 + a23b32 + a33b33 − 1 = 0

b31u12 + b32u22 + b33u32 = 0, b31u13 + b32u23 + b33u33 = 0.
(3.11)

are obtained.
Step IV Solving the system of equations (3.10) and (3.11) in terms of a23, a31, a32 and a33
yields

b31 = −12, b32 =
15

2
, b33 = 0, a13 =

1

24
(15a23 − 2) , a21 = 0,

v32 =
9

2
, u12 =

−5

24
(3a23 − 2) , u13 =

−5

72
(9a23 − 2) , u22 =

1

3
(2− 3a23) ,

u23 =
1

9
(2− 9a23) , u32 = −a31 − a32 − a33 + 1, u33 =

1

6
(−2a31 − 4a32 − 6a33 + 3) .

(3.12)

Step V Substituting the real coefficients (3.12) into (3.9), thenM(z) can be obtained. The only
non-zero eigenvalue of M(z) is given as

R(z) =
N(z)

D(z)
=

−72 + (72a33 − 72) z + ς1z
2 + ς2z

3

3 (15a23a31z2 − 2a31z2 + 24a23a32z2 + 24a33z − 24)
,
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where ς1 = 45a23a31−6a31+72a23a32+72a33−36 and ς2 = 45a23a31−10a31+72a23a32−
16a32. In order to ensure L-stability, ς1 and ς2 in N(z) is set to zero. Thus,

a31 = 6 (2a33 − 1) , a32 =
−15

4
(2a33 − 1) .

Also, to ensureA-stability, we look for suitable values of a23 and a33 by enforcing the condition
that the E-polynomial (3.3) is greater or equal to zero. Here, we obtain the values, a23 = 1

4
and a33 = 0. Thus, the resulting method is given as

Y1
Y2
Y3
yn+1

hy′n+1

h2y′′n+1

 =


0 0 7

96 1 25
96 − 5

288
0 0 1

4 1 5
12 − 1

36
−6 15

4 0 1 13
4 0

−6 15
4 0 1 13

4 0
0 0 1 0 0 0
−12 15

2 0 0 9
2 0




hF1

hF2

hF3

yn
hy′n
h2y′′n

 . (3.13)

The stability matrix is

M(z) =


9z−4

2(z2−2) − 13
2(z2−2) 0

z(9z−4)
2(z2−2) − 13z

2(z2−2) 0

− z(2z−9)
z2−2 −2z2+9

z2−2 0

 ,
and the only non-zero eigenvalue is

R(z) = −2(z + 1)

z2 − 2
.

The method (3.13) is L-stable.
Methods s = 4, 5, case I.
Higher order methods can also obtained following the procedures above. The third order L-
stable method with abscissae vector c =

[
1
4 ,

1
2 ,

3
4 , 1
]

is given as

Y1
Y2
Y3
Y4
yn+1

hy′n+1

h2y′′n+1

h3y
(3)
n+1





0 0 0 1
192 1 47

192
5

192 0
−8

3 0 0 1
24 1 25

8
3
4

1
12

−76
13 0 0 9

64 1 5371
832

1333
832

19
104

−14
3

19
3 −26

9
2
3 1 14

9 0 0

−14
3

19
3 −26

9
2
3 1 14

9 0 0
0 0 0 1 0 0 0 0
28 −38 52

3 0 0 −22
3 0 0

112 −152 208
3 −6 0 −70

3 2 0





hF1

hF2

hF3

hF4

yn
hy′n
h2y′′n
h3y

(3)
n


, (3.14)
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with the stability matrix given as

M(z) =


− 2(11z−9)

3(z2−4z+6)
28

3(z2−4z+6)
0 0

− 2z(11z−9)
3(z2−4z+6)

28z
3(z2−4z+6)

0 0

− 2z(35z−66)
3(z2−4z+6)

2(3z2+44z−66)
3(z2−4z+6)

0 0

−4z(37z−105)
3(z2−4z+6)

14(3z2+8z−30)
3(z2−4z+6)

2 0

 .

The only non-zero eigenvalue of M(z) is

R(z) =
2(z + 3)

z2 − 4z + 6
.

For the method s = 5, with abscissae vector c =
[
1
5 ,

2
5 ,

3
5 ,

4
5 , 1
]
, the method A,U,B, V con-

structed is given as

A =


0 0 0 0 1

10
0 0 0 0 1408

2125
2156000
17169 −327250

17169 0 0 −2290758641
24322750

5992000
17169 −909500

17169 0 0 −3205443984
12161375

305
72 −65

8
535
72 −385

144
1
2

 ,

U =


1 1

10 − 2
25 − 73

1500 − 83
5000

1 − 558
2125 −1238

2125 −2044
6375 − 1162

10625
1 −856130627

72968250
934855868
12161375

6733539637
145936500

7655942327
486455000

1 −1154793248
36484125

2618160624
12161375

4711234288
36484125

2678304424
60806875

1 − 53
144

1
12 0 0

 ,

B =


305
72 −65

8
535
72 −385

144
1
2

0 0 0 0 1
−305

6
195
2 −535

6
385
12 0

−33595
177

67685
118 −95765

177
68915
354 −12

−9620855
236

5970243
944

1
4

1
4 −4296

59

 ,

V =


1 − 53

144
1
12 0 0

0 0 0 0 0
0 125

12 0 0 0
0 −4501

177 −625
59 0 0

0 32581441
944

13442481
2360

4078737
11800 0

 ,
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where, Y =


Y1
Y2
Y3
Y4
Y5

, y[n] =


yn+1

hy′n+1

h2y′′n+1

h3y
(3)
n+1

h4y
(4)
n+1

, hF =


hF1

hF2

hF3

hF4

hF5

 and y[n−1] =


yn
hy′n
h2y′′n
h3y

(3)
n

h4y
(4)
n

.

The stability matrix M(z) has only one non-zero eigenvalue given as

R(z) =
z2 + 6z + 12

z2 − 6z + 12
.

FromR(z), it is deduced that the fourth order method for this case isA-stable but not L-stable.
Method s = 2, case II.
Step I In this case, for s = 2, the A,U,B, V is given as
yn+c1
yn+c2
yn+1

hy′n+1

 =

[
A U
B V

]
hfn+c1
hfn+c2
yn
hy′n

⇒

yn+c1
yn+c2
yn+1

hy′n+1




λ a12 1 u12
a21 λ 1 u22
a21 λ 1 u22
0 1 0 0



hfn+c1
hfn+c2
yn
hy′n

 .
(3.15)

Step II Using the order conditions (2.10) with the abscissae values c1 = 1
2 , c2 = 1 and a21 = λ

2
then

u12 =
1

2
(−2a12 − 2λ+ 1)

u22 =
1

2
(2− 3λ).

Step III In this case, p = 1 .
Step IV and V By substituting a21, u12 and u22 into (3.15), the stability matrix can computed,
and M(z) is given as

M(z) =

 − zλ−2
2λ2z2−λa12z2−4λz+2

4zλ2−3zλ−2za12λ−6λ+4
2(2λ2z2−λa12z2−4λz+2)

− z(zλ−2)
2λ2z2−λa12z2−4λz+2

z(4zλ2−3zλ−2za12λ−6λ+4)
2(2λ2z2−λa12z2−4λz+2)

 ,
with the only non-zero eigenvalue

R(z) =
N(z)

D(z)
=
z2
(
−2a12λ+ 4λ2 − 3λ

)
+ (4− 8λ)z + 4

2 (−a12λz2 + 2λ2z2 − 4λz + 2)
.

For L-stability of (3.15), the coefficient of z2 in N(z) is set to zero, that is, we equate

−2a12λ+ 4λ2 − 3λ = 0,

which gives a12 = 1
2(4λ− 3), and thus R(z) yields

R(z) =
N(z)

D(z)
= − 4(2λz − z − 1)

3λz2 − 8λz + 4
. (3.16)
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What is now left is to ensure A-stability, this is done by requiring E(y) ≥ 0. Replacing z = iy
in (3.16), thus

E(y) = 9λ2y4 + (40λ− 16)y2 ≥ 0 (3.17)

The inequality (3.18) suggests that for A-stability to be achieved, λ ≥ 2
5 . As an example,

choosing λ = 2
5 , the resulting A-stable method is given as

yn+ 1
2

yn+1

yn+1

hy′n+1

 =


2
5 − 7

10 1 4
5

1
5

2
5 1 2

5
1
5

2
5 1 2

5
0 1 0 0



hfn+ 1

2

hfn+1

yn
hy′n

 , (3.18)

having stability matrix,

M(z) =

[
− 2(z−5)

3z2−8z+10
4

3z2−8z+10

− 2(z−5)z
3z2−8z+10

4z
3z2−8z+10

]
,

with the only non-zero eigenvalue of M(z) being

R(z) =
2(z + 5)

3z2 − 8z + 10
.

The method (3.18) is seen to be L-stable. This method gained an order to make p = 2.
Method s = 3, case II.
Step I With s = 3, the method for case II is in general

Y1
Y2
Y3
yn+1

hy′n+1

h2y′′n+1

 =


λ 0 a13 1 u12 u13
a21 λ a23 1 u22 u23
0 a32 λ 1 u32 u33
0 a32 λ 1 u32 u33
0 0 1 0 0 0
b31 b32 b33 0 v32 0




hF1

hF2

hF3

yn
hy′n
h2y′′n

 . (3.19)

Step II Using the order conditions in (2.10) with the abscissae values c1 = 1
3 , c2 = 2

3 , c3 = 1

and a21 = λ
2 , we obtain

a13 + λ+ u12 =
1

3
, a13 +

λ

3
+ u13 =

1

18
, a23 +

3λ

2
+ u22 =

2

3
,

a23 +
5λ

6
+ u23 =

2

9
, a32 + λ+ u32 = 1,

2a32
3

+ λ+ u33 =
1

2
,

b31 + b32 + b33 + v32 = 0,
b31
3

+
2b32

3
+ b33 = 1.

(3.20)
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Step III In order to achieve IRK stability, the condition (3.1) must be satisfied, So, with J = 0 0 0
1 0 0
0 1 0

, IRK stability will be achieved if

b31λ+
b32λ

2
= 0, a32b33 + b32λ = 0, a13b31 + a23b32 + b33λ− 1 = 0,

b31u12 + b32u22 + b33u32 = 0, b31u13 + b32u23 + b33u33 = 0.
(3.21)

Step IV Solving the systems of equations in (3.21) and (3.22) in terms of a13 and λ yields

b31 =
9

2
, b32 = −9, b33 =

11

2
, a23 =

1

18
(9a13 + 11λ− 2) ,

a32 =
18λ

11
, v32 = −1, u12 =

1

3
(−3a13 − 3λ+ 1) ,

u13 =
1

18
(−18a13 − 6λ+ 1) , u22 =

1

18
(−9a13 − 38λ+ 14) ,

u23 =
1

18
(−9a13 − 26λ+ 6) , u32 =

1

11
(11− 29λ), u33 =

1

22
(11− 46λ).

Step V Substituting the real coefficients into (3.19), then M(z) can be obtained. The only
non-zero eigenvalue of M(z) is given as

R(z) =
N(z)

D(z)
=
z3
(
18a13λ− 40λ2 + 10λ

)
+ z2

(
18a13λ− 44λ2 + 62λ− 11

)
+ (66λ− 22)z − 22

2 (9a13λz2 + 2λ2z3 − 22λ2z2 − 2λz2 + 33λz − 11)
.

In order to ensure L-stability, the coefficient of z3 in N(z) is equated to zero, to obtain a13.
Thus,

18a13λ− 40λ2 + 10λ = 0,

then

a13 =
5

9
(4λ− 1).

To also ensure A-stability, we look for suitable values of λ by enforcing the condition that the
E-polynomial (3.3) is greater or equal to zero. Then R(z) becomes

R(z) =
−4λ2z2 + 52λz2 − 11z2 + 66λz − 22z − 22

2 (2λ2z3 − 2λ2z2 − 7λz2 + 33λz − 11)
.

The E-polynomial from this is given as

E = 16λ4y6 +
(
−2596λ2 + 1144λ− 121

)
y4.
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Therefore, the second order method isA-stable if 0.176304 ≤ λ ≤ 0.264374. Choosing λ = 1
5

the resulting method is
Y1
Y2
Y3
yn+1

hy′n+1

h2y′′n+1

 =



1
5 0 −1

9 1 11
45

1
10

1
10

1
5 − 2

45 1 37
90

1
10

0 18
55

1
5 1 26

55
9

110
0 18

55
1
5 1 26

55
9

110
0 0 1 0 0 0
9
2 −9 11

2 0 −1 0




hF1

hF2

hF3

yn
hy′n
h2y′′n

 . (3.22)

The stability matrix of this is given as

M(z) =


− 2z2−20z+275

2z3−37z2+165z−275
5(3z−26)

2z3−37z2+165z−275 − 45
2(2z3−37z2+165z−275)

− z(2z2−20z+275)
2z3−37z2+165z−275

5z(3z−26)
2z3−37z2+165z−275 − 45z

2(2z3−37z2+165z−275)

− z(17z2+110z+275)
2z3−37z2+165z−275

13z3−93z2−165z+275
2z3−37z2+165z−275 − 45z2

2(2z3−37z2+165z−275)

 ,
and its only non-zero eigenvalue is

R(z) =
−19z2 − 220z − 550

2 (2z3 − 37z2 + 165z − 275)
.

The method (3.22) is L-stable.
Methods s = 4, 5, case II.
Following the procedures discussed above, we choose a14 and λ to ensure L-stability and A-
stability. The L-stable third order method with abscissae vector c =

[
1
4 ,

1
2 ,

3
4 , 1
]

and λ = 27
20 ,

is

Y1
Y2
Y3
Y4
yn+1

hy′n+1

h2y′′n+1

h3y
(3)
n+1


=



27
20 0 0 139

9920 1 −11051
9920 −3177

9920 − 2773
59520

279
260

27
20 0 − 439

3120 1 −5561
3120 −1057

1560 − 2773
24960

0 1053
220

27
20 −3617

3520 1 −15343
3520 −671

320 −2773
7040

0 0 −594
215

27
20 1 415

172
1051
860

2773
10320

0 0 −594
215

27
20 1 415

172
1051
860

2773
10320

0 0 0 1 0 0 0 0
248
15 −104

5
88
15

43
15 0 −67

15 0 0
31496
405 −11128

135
2552
135

2881
405 0 −961

45
13
27 0





hF1

hF2

hF3

hF4

yn
hy′n
h2y′′n
h3y

(3)
n


,

(3.23)
whose stability matrix (M(z)) has only one non-zero eigenvalue given as

R(z) =
314903z3 + 659670z2 − 908160z + 206400

3 (59049z4 − 277749z3 + 557010z2 − 371520z + 68800)
.
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The fourth order L-stable method with inherent Runge-Kutta stability constructed with abscis-
sae vector c =

[
1
5 ,

2
5 ,

3
5 ,

4
5 , 1
]

and λ = 21
50 , is

A =


21
50 0 0 0 − 28758947

3228284375
3099153
5273800

21
50 0 0 − 49619763617451

953418263665000
79152743673
173954183480

3876243
4123075

21
50 0 −163737980735125587807

786203001492113975000
0 3306303

613075
3463383
613075

21
50 −205406762

76634375
0 0 0 − 514983

3358370
21
50

 ,

U =


1 − 1362927231

6456568750
− 177851253

3228284375
− 101204833

38739412500
76812901

77478825000

1 − 264862822585687
476709131832500

− 73168226144087
476709131832500

− 24782153724907
2860254790995000

64028853073669
14301273954975000

1 − 395810122505056214409
393101500746056987500

− 130035411699607374309
393101500746056987500

− 15550314259044617289
786203001492113975000

256515143216797401
17868250033911681250

1 − 1223365851
153268750

− 220888263
76634375

− 72275759
459806250

76812901
459806250

1 6157094
8395925

340328
1679185

2889779
503755500

− 76812901
5037555000

 ,

B =


0 0 0 − 514983

3358370
21
50

0 0 0 0 1
−235123

11232
211723
5616 −164923

5616
24523
11232

335837
56160

−26111078281
55194048

14470724881
27597024 −7907563081

27597024
888885181
55194048

8243790839
275970240

−1375814052394645
271223551872

572238025434445
135611775936 −245066080909045

135611775936
22682855755345
271223551872

33642311280751
271223551872

 ,

V =


1 6157094

8395925
340328
1679185

2889779
503755500 − 76812901

5037555000
0 0 0 0 0
0 249163

56160 0 0 0
0 52235556661

275970240
137971
9828 0 0

0 665144996307749
271223551872

10623769825
48294792

38929
103194 0

 ,

with, Y =


Y1
Y2
Y3
Y4
Y5

, y[n] =


yn+1

hy′n+1

h2y′′n+1

h3y
(3)
n+1

h4y
(4)
n+1

, hF =


hF1

hF2

hF3

hF4

hF5

 and y[n−1] =


yn
hy′n
h2y′′n
h3y

(3)
n

h4y
(4)
n

.

The stability matrix M(z) can be verified to have only one non-zero eigenvalue using (2.12).

4. IMPLEMENTATION AND NUMERICAL EXPERIMENTS

There are efficient ways of implementing general linear methods in literature, some of which
include: the implementation of diagonally implicit multistage integration methods, a class of
GLMs of [6], implementation of GLMs with IRK stability of [3, 16], just to mention a few, in
what follows, we follow the ideas of [3].

4.1. Convergence of MiGLMs with IRK stability for index 1 and 2 DAEs. As earlier
stated, we are interested in solving differential algebraic equations of index 1 and 2.



280 P. O. OLATUNJI AND M . N. O. IKHILE

Index 1 DAEs.
Applying (2.1) to (1.3), and for every invertible matrix A, we obtain

Yi = hAF (Yi, Zi) + Uy[n−1],

0 = g(Yi, Zi),

y[n] = hBF (Yi, Zi) + V y[n−1],

z[n] = M(∞)z[n−1] +BA−1Zi,

(4.1)

with respect to the constructed methods M(∞) = V −BA−1U .

Theorem 4.1. [1, 32] For the index 1 problem (1.3) with consistent initial conditions, the
global error of the integration procedure (4.1) when (2.1) of order p, stage order q, (p ≥ q)
and having non-singular A matrix, satisfies

Yi − y(xn + cih) = O(hq+1),

Zi − z(xn + cih) = O(hq+1),

with the output solution having global error satisfying

yn − y(xn) = O(hp),

zn − z(xn) = O(hr),

for nh ≤ Constant.
(a) the MiGLM (2.1) is stiffly accurate and zn − z(xn) = O(hp).
(b) r = min(p, q + 1) if ρ(M(∞)) < 1.
(c) r = min(p− 1, q) if ρ(M(∞)) = 1.
(d) if the method is not stable at infinity, then the solution zn diverges.

Here, ρ(M(∞)) means the spectral radius of M(∞).

Proof. For the first case, the MiGLM (2.1) is stiffly accurate, thus the numerical solutions
arising from (4.1) are equivalent to those of the equation

y′ = f(y, g(y)),

where z = g(y) is the locally unique solution of the second equation of (1.3), thus, the conver-
gence of the solution is described as

zn − z(xn) = O(hp).

For the remaining case, we have

Z(xn + cih) = hAZ ′(xn + cih) + Uz(xn) +O(hq+1), (4.2)

z(xn + h) = hBZ ′(xn + cih) + V z(xn) +O(hp+1), (4.3)
since A is non-singular, we compute Z(xn + cih) from (4.2) and substitute into (4.3). This
gives

z(xn + h) = M(∞)z(xn) +BA−1Z ′(xn + cih) +O(hq+1) +O(hp+1), (4.4)
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and denote the global error4zn = zn − z(xn) and4Zn = Zn+ci −Z(xn + cih), subtracting
(4.4) from the last expression of (4.1) yields,

4zn+1 = M(∞)4z(xn) +BA−14Z ′n +O(hq+1) +O(hp+1). (4.5)

Since the first three equations of (4.1) define yn+1 independently of zn, yn+1 coincides with
the solution of (ii) by the same method. Thus, we have

4yn = yn − y(xn) = ep(xn)hp +O(hp+1).

Also, for the y-component, (4.2) is written as

Y (xn + cih) = hAY ′(xn + cih) + Uy(xn) +O(hq+1),

and subtracting from the first equation of (4.1) yields

4Yn = U4yn + hA [f (Yn+ci , g(Yn+ci))− f (y(xn + cih), g(y(xn + cih)))] +O(hq+1),
(4.6)

where4Yn = Yn+ci − y(xn + cih) and4yn = yn − y(xn), (4.6) implies that

4Yn = Yn+ci − y(xn + cih) = O(hv),

with v = min(p, p+ 1) and the second equation of (4.1) also gives

4Zn = Zn+ci − z(xn + cih) = O(hv).

Then (4.5) becomes

4zn+1 = M(∞)4z(xn) +O(hv).

Recursion of this formula leads to

4zn = M(∞)nδ0 +

n∑
i=1

M(∞)n−iδi, (4z0 = 0), (4.7)

with δ0 = O(hq+1) and δi = O(hv).
If ρ(M(∞)) = 1, the statement is proved, and if ρ(M(∞)) 6= 1, (4.7) is written as

n∑
i=0

M(∞)n−iδi =
[
(I −M(∞)n+1)(I −M(∞)−1)

]
δ0+

n∑
i=1

[
(I −M(∞)n−i+1)(I −M(∞)−1)

]
(δi−δi−1),

and the result follows that

δi − δi−1 = O(hv+1).

�
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Index 2 DAEs.
When (2.1) is applied to (1.4), we obtain

Yi = hAF (Yi, Zi) + Uy[n−1],

0 = g(Yi),

y[n] = hBF (Yi, Zi) + V y[n−1],

z[n] = M(∞)z[n−1] +BA−1Zi.

(4.8)

The first two equations of (4.8) must have a unique solution, in order to compute for the output
solution yn+1 and zn+1 arising from the last two equations of (4.8).

Theorem 4.2. [1, 32] Let the index 2 problem (1.4) have consistent initial conditions, whose
solution is given as (y(x), z(x)), the MiGLM of order p and stage order q with p ≥ 2 and
q ≥ 1 applied on (1.4), and obtaining (4.8) is convergent with order r = min(p, q + 1), i.e.

yn − y(xn) = O(hr),

zn − z(xn) = O(hr), r ≥ 2,

for xn − x0 = nh ≤ Constant.

Proof. The proof is divided into several parts containing
(a) Existence and Uniqueness of the numerical solution.
(b) Influence of perturbation.
(c) Local error.
(d) Convergence for the y and z component.

The proof to (a), (b), and (c) are similar to that of the proof to Theorems 2, 3 and 4 of [32]. For
the case (d), let the auxiliary form of (4.8) be given as

Ŷi = hAF (Ŷi, Ẑi) + Uŷ[n−1],

ŷ[n] = hBF (Ŷi, Ẑi) + V ŷ[n−1],

0 = g(Ŷi).

Convergence of the y-component: denoting the global error4yn = yn− y(xn), and suppose
that ‖ 4yn ‖≤ C0h

2 and let δy denote the local error, i.e. δy = yn − y(xn) = O(hr). If C1

also denotes the constant involved in the O(hr) term then

‖ yn+1 − ŷn+1 ‖=‖ 4yn+1 − δy ‖≤
(
C0 + C1h

r−2)h2 ≤ C2h
2.

This comes further to be
4yn+1 = (yn+1 − ŷn+1) + (ŷn+1 − y(xn + h))

= V4yn + hB
(
f(Yi, Zi)− f(Ŷi, Ẑi)

)
+ δy.

Denoting4Fn = f(Yi, Zi)− f(Ŷi, Ẑi), the Lipschitz condition of Fn satisfies

‖ 4Fn ‖≤ L ‖ B ‖ (‖ yn − ŷn ‖ + ‖ zn − ẑn ‖) .
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For the stiffly accurate MiGLM,

g(Yi)− g(Y (xn + cih)) = 0 i = 1, 2, ..., s.

So that the following estimations are obtained

‖ yn − ŷn ‖≤ C3 ‖ 4yn ‖,

and

‖ 4Fn ‖≤ C4 ‖ 4yn ‖ .

Consequently a recursion of the form

4yn+1 = V4yn + h4Fnδy,

We can also say there exist another constant C5 independent of C0 such that for all n,

nh ≤ Constant =⇒‖ 4yn ‖≤ C5h
r.

It is seen that C6 is independent of C0

4yn+1 ≤ C6h
r.

This same relation holds for all point xn (by induction).
Convergence of the z-component: the global error of the z-component can be written as

zn+1 − z(xn + h) = (zn+1 − ẑn+1) + (ẑn+1 − z(xn + h)) ,

where ẑn+1 satisfies the auxiliary system

ẑ(xn + h) = M(∞)ẑ(xn) +BA−1Zi

ŷn = hAF (Ŷi, Ẑi) + Uŷ(xn).

Then

zn+1 − z(xn + h) = M(∞)(zn − z(xn)) +BA−1(zn − ẑn) + δy,

where δz = zn − z(xn) = O(hr). This can also be shown as in the case of the y-component
above that

‖ zn − ẑn ‖≤ C (‖ yn − y(xn) ‖ +hr) .

The result follows from the hypothesis. �

4.2. Implementation procedures. To implement the MiGLM (2.1), the following procedures
are considered.
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General linear method starters: In implementation, starter is required for finding an approxi-
mation to the Nordsieck vector

y[0] =


y
[0]
1

y
[0]
2

y
[0]
3
...

y
[0]
p+1

 ≈


y(x0)
hy′(x0)
h2y′′(x0)

...
hpy(p)(x0)

 .

A good estimate we use here is constructing explicit RKM with abscissae values ci = i−1
s , i =

1, 2, ..., s given as

Y = hĀF + ey0
y[0] = hB̄F + e1y0

(4.9)

where e = (1, 1, 1, ..., 1)T ∈ R(s×1), e1 = (1, 0, 0, ..., 0)T ∈ R(s×1) and y0 is an approxima-
tion to the initial solution y(x0).

Lemma 4.3. [31] The stage order q of (4.9) satisfies

ĉki = k
s∑
j=1

āij ĉ
k−1
j ; i = 1, 2, ..., s; k = 1, 2, ..., q, (4.10)

and the output order p of (4.9) satisfies

1

k
=

s∑
j=1

b̄ij ĉ
k−1
j i = 1, 2, ..., s; k = 1, 2, ..., p. (4.11)

The stages of (4.9) is obtained by writing the first equation of (4.9) as

Yi = h
s−1∑
j=1

āijF (Yj) + y(x0), (4.12)

where Yi ≈ y(x0 + ĉih) and ĉi ∈ [0, 1]. Expanding (4.12) by Taylor series about x0 and
equating powers of h yields the stage order condition in (4.10).
In similar sense, the component of the output method in (4.9) is obtained by expanding

y(x0 + h) = h
s−1∑
j=1

b̄1jF (Yj) + y(x0),

and

hk−1y(k−1)(x0 + h) = h

s−1∑
j=1

b̄ijF (Yj), i = 2, 3, ..., s; k = 2, 3, ..., p,
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by Taylor series about x0 and equating powers of h, yielding (4.11). Thus, the first stage order
condition yields

ā1j = 0,

the second stage order condition yields

ĉ2 =
1∑
j=1

â2j ,

the third stage order condition yields

ĉ3 =
2∑
j=1

â3j , ĉ23 = 2
2∑
j=1

â3j ,

the fourth stage order condition yields

ĉ4 =

3∑
j=1

â4j , ĉ24 = 2

3∑
j=1

â4j ĉ34 = 3

3∑
j=1

â4j .

Example: For the method of s = 2, q = 1, p = 2, c1 = 0, c2 = 1
2 the predictor method is

given as 
Y1
Y2
yn+1

hy′n+1

 =


0 0 1
1
2 0 1
0 1 1
−1 2 0


 hF1

hF2

yn

 .
In the case of s = 3, q = 2, p = 3, c1 = 0, c2 = 1

3 , c3 = 2
3 , the predictor method is given as

Y1
Y2
Y3
yn+1

hy′n+1

hy′′n+1

 =


0 0 0 1
1
3 0 0 1
0 2

3 0 1
1
4 0 3

4 1
1 −3 3 0
9
2 −12 15

2 0



hF1

hF2

hF3

yn

 .

For s = 4, q = 3, p = 4, c1 = 0, c2 = 1
4 , c3 = 1

2 , c4 = 3
4 , the predictor method is given as

Y1
Y2
Y3
Y4
yn+1

hy′n+1

hy′′n+1

hy
(3)
n+1


=



0 0 0 0 1
1
4 0 0 0 1
0 1

2 0 0 1
3
16 0 9

16 0 1

0 2
3 −1

3
2
3 1

−1 4 −6 4 0
−22

3 28 −38 52
3 0

−32 112 −128 48 0




hF1

hF2

hF3

hF4

yn

 .
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Iterative Procedure to resolve implicitness in the methods: The Newton’s method is employed
to resolve the implicitness of the MiGLMs (2.1) . In implementing fully implicit Runge-Kutta
methods, the implicitness of each stages must be resolved, however, in the case of the MiGLMs
proposed, the implicitness is only on the last stage (Ys), thus making MiGLMs less computa-
tional intensive to that of implicit RKMs. The procedure employed is to first predict the initial
Nordsieck vectors y[0] and the last stage Ys and denote as Ŷs using the starters discussed earlier.
To solve the non-linear problem (1.1), the stages Yi, i = 1, 2, ..., s − 1 of the MiGLMs (2.1)
have to be solved iteratively using

Yi−haiif(Yi) = h

i−1∑
j=1

aijf(Yi)+hassf(Ŷs)+

r∑
j=1

uijy
[n−1]
j , i = 1, 2, ..., s−1, (4.13)

and the last stage Ŷs is improved using

Ys − hassf(Ys) = h

s−1∑
j=1

asjf(Yi) +

r∑
j=1

usjy
[n−1]
j . (4.14)

Denoting the right hand side of (4.13) as φi, (4.13) is expressed as

Yi − haiif(Yi) = φi, i = 1, 2, ..., s− 1, (4.15)

equation (4.15) can be expressed as

ϕi = Yi − haiif(Yi)− φi = 0, i = 1, 2, ..., s− 1.

The Newton’s method for (4.13) is defined as

Y
[m+1]
i = Y

[m]
i − J−1ϕ[m]

i , i = 1, 2, ..., s− 1, m = 0, 1, 2, ...,M,

where m is the m-th Newton’s iteration and J is the Jacobian defined as

J = I − haii
∂f

∂y
(Yi) , i = 1, 2, ..., s− 1,

also, denoting the right hand side of (4.14) as φs, (4.14) is expressed as

Ys − hassf(Ys) = φs, (4.16)

equation (4.16) is given as

ϕs = Ys − hassf(Ys)− φs = 0.

The iterative procedure for (4.14) is thus defined as

Y [m+1]
s = Y [m]

s − χ−1ϕ[m]
s , m = 0, 1, 2, ...,M,

where χ is the Jacobian of ϕs. After getting the stages, Eqs. (4.13) and (4.14) are repeated to
obtain corrected solution to the stages Y [M ]

i , i = 1, 2, ..., s, and Y [M ]
s is equal to the output

yn+1.



FSAL MIGLMS WITH IRK STABILITY FOR DAES 287

Error estimation and Stepsize control: For variable step size implementation, changing the step
size is used to control the error for efficient solution. The local truncation error can be defined
as

En = Cp+1h
p+1y(p+1)(xn) +O(hp+2), p ≥ 1, (4.17)

where Cp+1 is the error constant of the specified method. Ignoring the O(hp+2) term of (4.17),
then

En ≈ Cp+1h
p+1y(p+1)(xn),

and for
hp+1y(p+1)(xn) ≈ h (d1f(Y1) + d2f(Y2) + · · ·+ dsf(Ys)) ,

where d1, d2, ..., ds are coefficients found by expanding f(Yi) by Taylor’s series about xn, the
local truncation error can be expressed as

En ≈ Cp+1 [d1hf(Y1) + d2hf(Y2) + · · ·+ dshf(Ys)] . (4.18)

Theorem 4.4. [31] For p ≥ 1 and s = p+ 1, the coefficients di, i = 1, 2, ..., s in (4.18) satisfy
the system of equations

s∑
i=1

1

(k − 1)!
ck−1i di = 0, k = 1, 2, ..., p− 1,

s∑
i=1

1

(k − 1)!
ck−1i di = 1, k = p.

The following example is the application of this theorem.
Example: For an order p = 2 MiGLM with abscissae values c1 = 1

3 , c2 = 2
3 and c3 = 1.

h3y(3)(xn) = d1hf(Y1) + d2hf(Y2) + d3hf(Y3)

= d1hy
′(xn +

1

3
h) + d2hy

′(xn +
2

3
h) + d3hy

′(xn + h),

by theorem 4.4, the coefficients di, i = 1, 2, 3 satisfy the system of equations

d1 + d2 + d3 = 0,
d1
3

+
2d2
3

+ d3 = 0,
1

18
(d1 + 4d2 + 9d3) = 1, (4.19)

solving (4.19) gives d1 = 9, d2 = −18, d3 = 9. For the case I MiGLM (2.1), the error
constant for the MiGLM (3.13) of order p = 2 is C3 = −1

3 , thus, the local truncation error
here is given as

En ≈ −3hf(Y1) + 6hf(Y2)− 3hf(Y3).

Here, the step size controller used has the form

hn+1 = θnhn,

where hn is the stepsize for the step n, hn+1 is the stepsize expected in the following step n+1
and θn is a coefficient computed using

θn = min

(
2,max

(
θ̂n,

1

2

))
; θ̂n = γ

(
TOL

‖ En ‖

) 1
p+1

,
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where γ is the safety factor chosen to be between 0 and 1, Here, we choose γ = 0.9, and TOL
is the specified tolerance.

4.3. Test problems for the numerical experiments. Experiments are carried out on an index
1 and 2 DAEs by implementing the MiGLM with IRK stability (3.13), (3.14), (3.22) and (3.23)
using fixed step size and variable step size. MATLAB ode15s and the third order RADAU IIA
[1]  yn+ 1

3

yn+1

yn+1

 =

 5
12 − 1

12 1
3
4

1
4 1

3
4

1
4 1

 hy′
n+ 1

3

hy′n+1

yn

 , (4.20)

were also implemented on the following test problems.
Problem 1. [32] The index 1 problem

y′(x) = −(2 + ε−1)y(x) + ε−1z(x)2, y(0) = 1; y(x) = e−2x

0 = y(x)− z(x)(1 + z(x)) + e−x, z(0) = 1; z(x) = e−x

ε = 10−1, 10−2.

Problem 2. [32] The index 2 problem

y′1(x) = −(2 + ε−1)y1(x) + ε−1y2(x)2, y1(0) = 1; y1(x) = e−2x

y′2(x) = −e1−z(x)2 , y2(0) = 1; y2(x) = e−x

0 = y1(x)− y2(x) (1 + y2(x)) +
y1(x)

y2(x)
, z(0) = 1; z(x) =

√
1 + x

ε = 10−1, 10−2.

4.4. Results and discussion. Using fixed step size implementation, we verify that the numer-
ical order of the methods match the theoretical order with the plot shown in Figs. 1 and 2. In
variable step size implementation, we compare the number of function evaluations (nfe) and
global errors eh of the MiGLMs, MATLAB ode15s and RADAU IIA (order p = 3) defined
in (4.20) with tolerances TOL = 10−j , j = 2, 4, 6, 8, 10, 12. The errors are measured in the
‖ · ‖2 norm. The plots of the global error eh versus nfe for the MiGLMs (3.13, 3.14, 3.24,
3.25), MATLAB ode15s and RADAU IIA (4.20) with ε = 10−1 are shown in Figs. 3 and 5
for problem 1 and Figs. 7 and 9 for problem 2. While the plots of the global error eh versus
nfe for the MiGLMs (3.13, 3.14, 3.24, 3.25), MATLAB ode15s and RADAU IIA (4.20) with
ε = 10−2 are shown in Figs. 4 and 6 for problem 1 and Figs. 8 and 10 for problem 2
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FIGURE 1. Numerical results for the MiGLM (3.13)and (3.24) on problem 1
at x = 1 with ε = 10−1.

The plots of the global error eh versus the step size h for the MiGLMs (3.13) and (3.22) of
order p = 2, MiGLMs (3.14) and (3.23) of order p = 3 applied to problem 1 with x ∈ [0, 1]
and ε = 10−1 is shown in Fig. 1. It is observed that the orders of the MiGLMs match the
theoretical orders, reporting that the MiGLMs do not suffer from order reduction.

MiGLMs (3.13), (3.22) and MATLAB ode15s were implemented on problem 1 with x ∈ [0, 1]
and ε = 10−1, 102. For both cases of ε = 10−1 and ε = 10−2, the MATLAB ode15s has lesser
number of function evaluations for all tolerances TOL = 10−j , j = 2(2)12. However, the
MiGLMs reports better accuracy than the MATLAB ode15s as shown in Figs. 3 and 4. In Figs.
7 and 8, the MiGLMs (3.13) and (3.22) also show better accuracy in terms of global error than
the MATLAB ode15s when applied on problem 2 with x ∈ [0, 1] and ε = 10−1, 10−2. The nfe
and eh of the MiGLMs (3.13) is equal to the nfe and eh of the MiGLMs (3.22) for tolerances
TOL = 10−2 and TOL = 10−4, thus the reason for only five nodes in Figs. 3,4,7 and 8.

The plots of nfe versus eh for the MiGLMs (3.14), (3.23) and RADAU IIA when applied to
problem 1 with x ∈ [0, 1] and ε = 10−1, 10−2 is shown in Figs. 5 and 6. It is observed that the
MiGLMs (3.14) and (3.23) has improved accuracy and fewer functional evaluations than the
RADAU IIA. In the case of problem 2, the MiGLMs (3.14) and (3.23) shows better accuracy in
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FIGURE 2. Numerical results for the MiGLM (3.14) and (3.25) on problem 1
at x = 1 with ε = 10−1.
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FIGURE 3. nfe versus ‖ eh ‖ at x = 1 with ε = 10−1 for problem 1.
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FIGURE 4. nfe versus ‖ eh ‖ at x = 1 with ε = 10−2 for problem 1.
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FIGURE 5. nfe versus ‖ eh ‖ at x = 1 with ε = 10−1 for problem 1.

terms of global error than the RADAU IIA. However, for ε = 10−2 and TOL = 10−10, 10−12,
the MiGLMs (3.23) has more function evaluations with good accuracy. The nfe and global
error eh of MiGLMs (3.14) when TOL = 10−2 is equal to that of 10−4 for problem 2 with
ε = 10−2.
The results of the MiGLMs for problems 1 and 2 show that the the methods do not amplify
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FIGURE 6. nfe versus ‖ eh ‖ at x = 1 with ε = 10−2 for problem 1.
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FIGURE 7. nfe versus ‖ eh ‖ at x = 1 with ε = 10−1 for problem 2.

errors (as shown in Figs. 3-10). This attest that the proposed methods are highly stable and
suitable for DAEs. Hence, satisfying its L-stability properties.
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FIGURE 8. nfe versus ‖ eh ‖ at x = 1 with ε = 10−2 for problem 2.
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FIGURE 9. nfe versus ‖ eh ‖ at x = 1 with ε = 10−1 for problem 2.

5. CONCLUSION

Mono-implicit Nordsieck general linear methods (MiGLMs) (2.1) with inherent Runge-
Kutta (IRK) stability property have been introduced herein. The methods have been imple-
mented as first same as last (FSAL). Conditions necessary for the MiGLMs (2.1) to possess
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FIGURE 10. nfe versus ‖ eh ‖ at x = 1 with ε = 10−2 for problem 2.

IRK stability property have been discussed and procedures for constructing such are high-
lighted in section 3. Two examples of MiGLMs with IRK stability property are derived up to
methods with internal stages s = 5. The case I MiGLMs (2.1) constructed are L-stable upto
internal stages s = 4 and L-stable upto internal stages s = 5 for case II MiGLMs (2.1). Higher
order methods can be derived following the approach discussed in section 3. The methods are
also suitable for the solution of DAEs for their reason of L-stability properties. Implementation
procedures by means of numerical test, suggest that the MiGLMs (2.1) do not suffer from order
reduction and also have improved accuracy than MATLAB ode15s and RADAU IIA (4.20) on
the problems considered. Future work will address issues pertaining to variable order variable
step size implementation.
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