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ABSTRACT. This paper proposes stochastic methods to find an approximate solution for the
L2-Wasserstein least squares problem of Gaussian measures. The variable for the problem is
in a set of positive definite matrices. The first proposed stochastic method is a type of clas-
sical stochastic gradient methods combined with projection and the second one is a type of
variance reduced methods with projection. Their global convergence are analyzed by using
the framework of proximal stochastic gradient methods. The convergence of the classical sto-
chastic gradient method combined with projection is established by using diminishing learning
rate rule in which the learning rate decreases as the epoch increases but that of the variance
reduced method with projection can be established by using constant learning rate. The numer-
ical results show that the present algorithms with a proper learning rate outperforms a gradient
projection method.

1. INTRODUCTION

The Wasserstein distance between two Gaussian measures µ1 and µ2 with zero mean and
covariance matrices Σ1 and Σ2, respectively, is given as follows [1]:

dW (Σ1,Σ2) =

√
Tr(Σ1 + Σ2)− 2Tr

(
Σ

1
2
1 Σ2Σ

1
2
1

) 1
2

.

If w = (w1, . . . , wn) be a positive provability vector in <n and S = (Σ1, . . . ,Σn) in which Σj

(for j = 1, . . . , n) are positive definite matrices, then thew-weighted Wasserstein barycenter of
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Gaussian measures µj with zero mean and covariance matrices Σj , respectively, is determined
by a solution of the following minimization problem (see [2] and references therein):

min
X�0

f(X) :=

n∑
j=1

wjd
2
W (X,Σj), (1.1)

where X � Y means that X − Y is positive semi-definite. Agueh and Carlier (Theorem 6.1,
[3]) proved that the problem (1.1) has a unique positive definite solution. Note that the problem
is related to the multi-marginal optimal transport problem;

min
γ∈Π(µ1,...,µn)

∫
(<)d)n

 n∑
j=1

wj‖xj − C(x) ‖2
 dγ(x1, . . . , xn),

where µj are probability measures with a finite second moment andC is the arithmetic barycen-
ter C(x) =

∑n
j=1wjxj and Π(µ1, . . . , µn) is the set of probability measures on (Rd)n hav-

ing marginals µ1, . . . , µn. There are articles [4, 5] to study connections between Wasserstein
barycenters and optimal transports. Wasserstein barycenters have been attracted in applica-
tions of statistics, image processing, and machine learning [6, 7, 8, 9, 10]. Several methods
have been proposed to solve the problem (1.1). Álvarez Esteban et al. [11] proposed a fixed
point iteration method based on the nonlinear matrix equation;

X =
1

n

n∑
j=1

(X
1
2 ΣjX

1
2 )

1
2 .

Recently, Kum and Yun [2] proposed three gradient projection methods - classical gradient
projection method with Armijo line search, gradient projection method with a fixed step size
based on pre-evaluated Lipschitz constant, and accelerated one.

The objective function of the problem (1.1) is the sum of several differentiable functions,
and the evaluation of the gradient of the objective function is the main computational cost for
methods, such as the gradient projection method, that require finding the descent direction
based on the gradient. This motivates us to adapt stochastic gradient (projection) methods
for solving the problem (1.1). In the stochastic gradient method, we only need to evaluate
one or a few gradients of component functions consisting of the objective function to update
iterates. This paper proposes a projected version of the classical stochastic gradient method
that evaluates one component function gradient at each iteration and proposes also a projected
one of the stochastic variance reduced gradient method [12]. We show the global convergence
property of them by using the analysis given in [13, 14].

This paper is organized as follows. In section 2, we briefly review the boundedness of the so-
lution of the problem (1.1), the Lipschitz continuity of the gradient of the objective function in
the problem (1.1), and the gradient projection method studied in [2]. In section 3, we describe
stochastic gradient (projection) methods and analyze their convergence properties. Section 4
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reports numerical results for finding the Wasserstein barycenter of Gaussian measures on ran-
domly generated matrices using proposed methods. Numerical comparisons with the gradient
projection method [2] are also given. Finally, concluding remarks are included in section 5.

2. LIPSCHITZ CONTINUITY AND GRADIENT PROJECTION METHOD

In this section, we review the boundedness of the solution of the problem (1.1), and the
Lipschitz continuity of the gradient of the objective function in (1.1), referring to [2]. The
gradient projection method proposed in [2] is also briefly described.

The solution of the problem (1.1) is in the Löwner order interval [λI, λ̄I] := {X : λI �
X � λ̄I}, where

λ :=

 n∑
j=1

wj

√
λmin(Σj)

2

, λ̄ :=

 n∑
j=1

wj

√
λmax(Σj)

2

.

Moreover, λmin(Σ) and λmax(Σ) denote the minimum and maximum eigenvalue of Σ, respec-
tively. Here, X � Y means that Y −X is positive semi-definite. Hence the problem (1.1) can
be expressed as the bound constraint minimization problem:

min
X∈D

f(X), (2.1)

where D := [λI, λ̄I].
The above facts for the solution of the problem (1.1) hold the following proposition for the

Lipschitz continuity of the slope of the objective function in (1):

Proposition 2.1. [2, Theorem 3.1] For λI � X,Y � λ̄I with X 6= Y,

‖∇f(X)−∇f(Y ) ‖F
‖X − Y ‖F

≤ L :=
L2

max

2L3
min

,

where Lmin = min1≤j≤n{λmin(Σj)} and Lmax = max1≤j≤n{λmax(Σj)}.

The gradient projection method (GPM) proposed in [2] uses the Armijo rule along the fea-
sible direction for selecting a stepsize. We compare this method with our proposed method for
the numerical experiments. The algorithm framework is described below.

Algorithm 1 Gradient projection method (GPM)

Choose X0 ∈ D. Initialize k = 0. Update Xk+1 from Xk by the following template:
Step 1.: Find X̄k = [Xk −∇f(Xk)]+,
Step 2.: Select a stepsize tk,
Step 3.: Xk+1 = Xk + tk(X̄k −Xk).

Here, [·]+ denotes the projection on the set [λI, λ̄I].

The stepsize tk is chosen by the following Armijo rule over the interval [0, 1]:
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Let tk be the largest element of {ξj}j=0,1,... satisfying

f(Xk + tkDk) ≤ f(Xk)− σtk〈∇f(Xk), Dk〉,
where 0 < ξ < 1, 0 < σ < 1, and Dk = X̄k −Xk.

3. STOCHASTIC GRADIENT (PROJECTION) METHOD

In this section, we describe stochastic gradient (projection) methods for solving the problem
(1.1), more precisely the problem (2.1), and analyze their convergence properties.

The first stochastic gradient (projection) method (SGM) is a projected version of the classical
stochastic gradient method that uses only one randomly selected component function gradient
at each iteration. Hence the computational cost to evaluate the direction is 1

n that of the gradient
projection method. This method is formally described below.

Algorithm 2 Stochastic gradient (projection) method (SGM)

Choose a positive definite matrix X0 ∈ D.
for k = 0, 1, . . . ,

X̂k
0 = Xk.

for t = 1, . . . , n

Step 1.: Randomly pick it ∈ {1, . . . , n}.
Step 2.: X̂k

t = [X̂k
t−1 − ηkt wit∇d2

W (X̂k
t−1,Σit)]

+.
end
Xk+1 = X̂k

n .
end

The second step of SGM is the projection of the matrix S ∈ Sd, where Sd is the set of d× d
symmetric matrices, onto the set D and is formulated as the following minimization problem,

min
X∈D

∥∥∥X − Skt ∥∥∥
F
, (3.1)

where Skt = X̂k
t−1 − ηkt wit(∇d2

W (X̂k
t−1,Σit)). The solution of this problem is

Ukt Diag
(
min(max(λ, λ1), λ̄), . . . ,min(max(λ, λd), λ̄)

)
(Ukt )T ,

where λ1 ≥ · · · ≥ λd are the eigenvalues of Skt and Ukt is a corresponding orthogonal matrix
of eigenvalues of Skt . This result can be found in [15].

The problem (3.1) can also be formulated as

X̂k
t = arg min

X∈Sd

1

2ηt

∥∥∥X − [X̂k
t−1 − ηkt wit∇d2

W (X̂k
t−1,Σit)]

∥∥∥2

F
+ ιD(X),

where ιD(X) is an indicator function of D, i.e., ιD(X) = 0 if X ∈ D or∞ otherwise. Hence
the proposed SGM can be considered as a specific version of a proximal stochastic gradient
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method (PSGM). Now, we establish the convergence property of SGM in the following theorem
by using the convergence analysis for PSGM. Its proof can be induced from [13, Proposition
9].

Theorem 3.1. Let {Xk} be the sequence generated by SGM with the learning rate ηkt satisfying
ηk−1
n ≥ ηk1 , ηkt−1 ≥ ηkt , ηk1 → 0, and

∑∞
k=0 η

k
1 =∞. Then, with probability 1,

lim inf
k→∞

f(Xk) = f∗,

where f∗ is the optimal value. Furthermore, if
∑∞

k=0(ηkt )2 < ∞ for all t = 1, . . . , n, then
{Xk} converges to the solution of the problem (1.1) with probability 1.

The proposed SGM has a disadvantage from the randomness, which causes variance; see
[12] for details. In order to overcome this disadvantage, we propose a projected version of
the stochastic variance reduced gradient method [12]. This is the second stochastic gradient
(projection) method, which is formally described below.

Algorithm 3 Stochastic variance reduced gradient (projection) method (SVRGM)

Choose a positive definite matrix X0 ∈ D.
for k = 0, 1, . . . ,

Step 1.: X̃ = Xk.
Step 2.: g = ∇f(X̃).
Step 3.: X̂k

0 = Xk.
probability Q = {q1, . . . , qn} on {1, . . . , n}

for t = 1, . . . ,m

Step 1.: Randomly pick it ∈ {1, . . . , n}.

Step 2.: X̂k
t =

[
X̂k
t−1 − η

(
wit (∇d2W (X̂k

t−1,Σit )−∇d2W (X̃,Σit ))

nqit
+ g

)]+

.

end
Xk+1 = 1

m

∑m
j=1 X̂

k
j .

end

Similarly, as described in SGM, the second step of SVRGM is expressed as follows:

X̂k
t = arg min

X∈Sd

1

2η

∥∥∥∥∥X −
[
X̂k
t−1 − η

(
wit(∇d2

W (X̂k
t−1,Σit)−∇d2

W (X̃,Σit))

nqit
+ g

)]∥∥∥∥∥
2

F

+ιD(X).

Hence the proposed SVRGM can be considered as a specific version of a proximal stochastic
variance reduced method (PSVRM). Before establishing a theorem for the convergence prop-
erty of the proposed SVRGM, we need the strong convexity of the objective function and the
Lipschitz continuity of the component functions in the problem (1.1).
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The objective function f(X) is strictly convex on the set of positive definite matrices [16],
and so it is easily derived that the function f(X) is strongly convex on the bounded and closed
set D, i.e., there exists µ > 0 such that X,Y ∈ D,

f(Y ) ≥ f(X) + 〈∇f(X), Y −X〉+
µ

2
‖Y −X ‖2F .

From Proposition 2.1, we can deduce the Lipschitz continuity of the gradient of each compo-
nent function as follows:∥∥∇d2

W (X,Σj)−∇d2
W (Y,Σj)

∥∥
F

‖X − Y ‖F
≤ Lj :=

λmax(Σj)
2

2λmin(Σj)3
, j = 1, . . . , n.

Now, we establish the convergence property of SVRGM in the following theorem by adapting
the convergence analysis for PSVRM. Its proof can be induced from [14, Theorem 1].

Theorem 3.2. Let X∗ = arg minX∈D f(X) and LQ = maxi Li/(qin). In addition, assume
that 0 < η < 1/(4LQ) and m is sufficiently large so that

ρ =
1

µη(1− 4Lq)m
+

4LQη(m+ 1)

(1− 4LQ)m
< 1.

Then SVRGM has geometric convergence in expectation:

E(f(Xk))− f(X∗) ≤ ρk[f(X0)− f(X∗)].

4. NUMERICAL EXPERIMENTS

In this section, we report the performance of SGM, SVRGM, and GPM with the Armijo rule
on n randomly generated matrices of the size d × d with wi = 1/n for all i = 1, . . . , n. The
d×d positive definite matrices Σ1, . . . ,Σn for the first test experiment are randomly generated
by MATLAB pseudo-code as follows:

for i = 1 : n
[Q, ] = qr(randn(d));
Σi = Q ∗ diag(0.1 + 99.9 ∗ rand(d, 1)) ∗Q′;

The eigenvalues of generated matrices are randomly distributed in the interval [0.1, 100].
In the second test experiment, each d × d positive definite matrix Σi is generated from

a Wishart Wd(I; d) distribution [11], independently of the others. We set the dimension of
positive definite matrices as 10 and the number of the positive matrices as 1000 for the first
experiment and 500 for the second experiment.

All runs are performed on a Laptop with Intel Core i7-10510U CPU (2.30GHz) and 16GB
Memory, running 64-bit Windows 10 and MATLAB (Version 9.8). We choose the initial iterate
to be X(0) = 0.5(Lmin + Lmax)I for all algorithms throughout the experiments, where Lmin

and Lmax are defined in Proposition 2.1. We set ξ = 0.5 and σ = 0.1 for GPM as suggested in
[2]. The learning rate for SGM is set to

ηkt = 10

(
1 + 0.1

[
k +

t

n

])−1

,
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TABLE 1. Comparison of the results obtained from GPM with those obtained
from SGM and SVRGM for the first test experiment. Note that obj, CPU, and
epochs indicate the final objective value, the elapsed CPU time (seconds), and
the number of epochs, respectively.

ε = 5× 10−3 ε = 10−6

GPM SGM SVRGM GPM SGM SVRGM

1 obj -449.7121141 -449.7121212 -449.7127527 -449.7132076 -449.7131899 -449.7132076

CPU 191.53 170.42 1.36 257.64 785.06 1.61

epochs 329 238 1 1088 3000 3
2 obj -447.2172693 -447.2173241 -447.2180269 -447.2183429 -447.2183179 -447.2183429

CPU 138.61 56.84 0.86 250.58 779.06 1.33

epochs 333 198 1 1086 3000 3
3 obj -445.0736002 -445.0736122 -445.0744007 -445.0746755 -445.0746580 -445.0746755

CPU 182.66 129.77 1.23 251.56 787.98 1.20

epochs 335 344 1 1086 3000 3
4 obj -442.6765796 -442.6765866 -442.6771942 -442.6776407 -442.6776013 -442.6776407

CPU 152.42 134.06 0.58 251.38 850.70 1.45

epochs 338 269 1 1085 3000 3
5 obj -447.7992681 -447.7992682 -447.7999917 -447.8003396 -447.8003279 -447.8003396

CPU 164.38 143.69 1.06 292.89 919.69 1.50

epochs 332 241 1 1087 3000 3

referring to [12]. The learning rate for SVRGM is usually set as a fixed constant η = 0.1/L
[12, 14], where L is the Lipschitz constant defined in Proposition 2.1. However, we set the
rate as η̃kt = max

{
η, ηkt

}
in order to improve the computational performance of SVRGM at

an initial stage. Moreover, we set m = n and use uniform sampling, i.e., qi = 1/n for all
i = 1, . . . , n.

To perform a comparison, we first ran GPM until satisfying the following criterion,∥∥∥∥ [Xk −∇f
(
Xk
)]+
−Xk

∥∥∥∥
F

< ε.

We then run SGM and SVRGM until satisfying the criterion based on the value of the objective
function obtained from GPM. Note that the value [Xk−∇f(Xk)]+−Xk is a descent direction
at Xk for GPM [2], and if this value is zero, then the corresponding point is optimal. In our
experiments, we use ε = 5 × 10−3, and ε = 10−6 for the first test experiment and ε = 10−2

and ε = 10−5 for the second test experiment. All the algorithms are also terminated when the
epoch reaches 3000.
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FIGURE 1. (a) Objective value versus epoch for the first test experiment. (b)
Objective value versus total sub-iterations (2 epochs) of SVRGM for the first
test experiment.

In Table 1, we report the final objective value, the elapsed CPU time in seconds, and the
number of epochs for three methods (GPM, SGM, and SVRGM) with five random data sets for
the first test experiment. Note that one epoch is the one iteration for GPM but requires n sub-
iterations for SGM and SVRGM. Then the total number of gradients evaluation of component
functions for GPM is equal to that for SGM, but this total number for SVRGM is two times
larger than that for GPM and SGM if we set m = n. Table 1 indicates that SVRGM is the
best algorithm for both low and medium accuracy. SGM performs better than GPM for low
accuracy. However, SGM does not reach the objective value of GPM for all cases within 3000
epochs for medium accuracy. Overall, SVRGM can give a reasonable estimate for the solution
in just a few epochs. Figure 1 (a) and (b) show the comparison of decrements of the objective
values with epochs for three methods and the decrement of the objective value with total sub-
iterations for two epochs when SVRGM is applied, respectively. From Fig. 1, we can clearly
observe that SVRGM quickly converges.

In Table 2, we report our numerical results, which address the final objective value, the
elapsed CPU time in seconds, and the number of epochs for three methods with five random
data sets for the second test experiment. Table 2 indicates that SVRGM is the best algorithm
for both low and medium accuracy. In this experiment, GPM performs better than SGM for
both low and medium accuracy. Similar to the first experiment, SVRGM can give a reasonable
estimate for the solution in just a few epochs. Figure 2 shows the comparison of decrements
of the objective values for three algorithms and shows the decrement of the objective value
for two epochs when SVRGM is applied. In contrast to the first experiment, SVRGM shows
oscillation behavior during sub-iterations of the first epoch.
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TABLE 2. Comparison of the results obtained from GPM with those obtained
from SGM and SVRGM for the second test experiment. Note that obj, CPU,
and epochs indicate the final objective value, the elapsed CPU time (seconds),
and the number of epochs, respectively.

ε = 10−2 ε = 10−5

GPM SGM SVRGM GPM SGM SVRGM

1 obj -70.9139991 -70.9140293 -70.9145738 -70.9146316 -70.9145481 -70.9146316

CPU 17.55 38.20 1.14 52.88 991.09 3.77

epochs 126 269 3 241 3000 5
2 obj -70.6459293 -70.6459457 -70.6464958 -70.6465338 -70.6464659 -70.6465338

CPU 15.19 44.27 0.72 64.17 889.63 2.27

epochs 121 315 3 233 3000 5
3 obj -71.0682832 -71.0682975 -71.0689221 -71.0689281 -71.0688384 -71.0689281

CPU 14.02 24.47 0.81 58.48 817.02 1.41

epochs 112 169 3 224 3000 5
4 obj -69.7738124 -69.7738181 -69.7744105 -69.7744282 -69.7743474 -69.7744282

CPU 14.89 42.23 0.69 35.00 776.27 2.52

epochs 117 298 3 229 3000 5
5 obj -69.6747806 -69.6747817 -69.6753501 -69.6753602 -69.6752906 -69.6753602

CPU 14.00 51.42 1.52 55.20 839.20 1.17

epochs 112 333 3 223 3000 5

5. CONCLUSION

We have proposed stochastic methods, i.e., the stochastic gradient projection method (SGM)
and the stochastic variance reduced gradient projection method (SVRGM), to compute the
Wasserstein barycenter of Gaussian measures and analyze their convergence properties by
adapting the analysis of the proximal stochastic gradient method and the proximal stochastic
variance reduced method. With an appropriate choice of learning rate (stepsize), the proposed
stochastic gradient projection methods can outperform the classical gradient projection method
in the initial stage. Furthermore, the proposed stochastic variance reduced gradient projection
method outperforms the classical gradient projection method for both low and medium accu-
racy. Designing the manifold version of stochastic methods for the Wasserstein barycenter of
Gaussian measures is an interesting future topic.
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FIGURE 2. (a) Objective value versus epoch for the second test experiment.
(b) Objective value versus total sub-iterations (2 epochs) of SVRGM for the
second test experiment.
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