• Title/Summary/Keyword: zooplankton grazing

Search Result 40, Processing Time 0.019 seconds

Grazing on Bacteria and Algae by Metazoans in the Lake-river Ecosystem (River Spree, Germany)

  • Kim, Hyun-Woo;Joo, Gea-Jae;Walz, Norbert
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.111-115
    • /
    • 2008
  • Direct effects of zooplankton grazing activities on the natural assemblage of bacterioplankton and algae were evaluated at monthly intervals, from June to October of 2000, in the middle part of the River Spree, Germany. We quantified bacterioplankton, algae, zooplankton abundance and measured carbon ingestion rates (CIRs) by zooplankton according to two zooplankton size classes: (i) micro zooplankton (MICZ), ranging in size from 30 to $150{\mu}m$ and including rotifers and nauplii, excluding protozoans and (ii) macrozooplankton (MACZ), larger than $150{\mu}m$ and including cladocerans and copepods. CIRs were measured using natural bacterial and algae communities in the zooplankton density manipulation experiments. Algae biomass (average${\pm}$SD: $377{\pm}306{\mu}gC\;L^{-1}$, n=5) was always higher than bacterial biomass ($36.7{\pm}9.9{\mu}gC\;L^{-1}$, n=5). Total zooplankton biomass varied from 19.8 to $137{\mu}gC\;L^{-1}$. Total mean biomass of zooplankton was $59.9{\pm}52.5{\mu}gC\;L^{-1}$ (average${\pm}$SD, n=5). Average MICZ biomass ($40.2{\pm}47.6{\mu}gC\;L^{-1}$ n=5) was nearly twofold higher than MACZ biomass ($19.6{\pm}20.6{\mu}gC\;L^{-1}$ n=5). Total zooplankton CIRs on algae (average${\pm}$SD: $56.6{\pm}26.4{\mu}gC\;L^{-1}\;day^{-1}$) were $\sim$fourfold higher than that on bacteria $(12.7{\pm}6.0{\mu}gC\;L^{-1}\;day^{-1})$. MICZ CIRs on bacteria $(7.0{\pm}2.8{\mu}gC\;L^{-1}\;day^{-1})$ and algae $(28.6{\pm}20.6{\mu}gC\;L^{-1}\;day^{-1})$ were slightly higher than MACZ CIRs. On average, MICZ accounted for 55.6 and 50.5% of total zooplankton grazing on bacteria and algae, respectively. Considering the MICZ and MACZ CIRs, the relative role of transferring carbon to higher trophic levels were nearly similar between both communities in the lake-river ecosystem.

Zooplankton Grazing on Bacteria and Factors Affecting Bacterial C-flux in Lake Paldang Ecosystem (팔당호 생태계에서 동물플랑크톤의 박테리아 섭식 및 영향인자)

  • Uhm, Seong-Hwa;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.424-434
    • /
    • 2006
  • This study investigates bacteria-zooplankton grazing link and factors affecting their grazing relationship at trophically different two sites (Paldang Dam and Kyungan Stream) of Lake Paldang Ecosystem from April to December, 2005. Zooplankton were divided into two size groups; microzooplankton (MICZ) : 60-200 ${\mu}m$ and macrozooplankton (MACZ): >200 ${\mu}m$), and their grazing rates on bacteria were conducted for each size group separately. Bacterial abundance and seasonal change pattern were similar between two sites. MICZ, mostly rotifers (e.g., Brachionus, Keratella, Polyathra) were numerically dominant at both sites, while carbon biomass was highest in cladocerans. Zooplankton biomass was higher at the Kyungan Steam site compared to Paldang Dam site, and their high biomass during spring decreased as they were passing through the storm events in summer season at both sites. Zooplankton clearance rate (CR) was high in spring and autumn while low in summer at Paldang Dam site. However, zooplankton CR was high during the summer at Kyungan Stream site. Bacterial C-flux was high in spring and autumn when MACZ (esp. cladecerans) developed at a high biomass level at both sites. Overall, MACZ community CR and carbon flux (C-flux) were higher than those of MICZ, and the degree of difference between them was higher at Kyungan Stream site. Short hydraulic residence time and physical disturbance caused by summer storm event appeared to affect the zooplankton grazing on bacteria at both sites. The results of this study indicate that bacteria are potentially important carbon source of zooplankton, and that both biotic (e.g,, prey and predator taxa composition and abundance) and physical parameters appear to alter energy transfer in the planktonic food web of this river-reservoir hybrid system.

The Spring Metazooplankton Dynamics in the River-Reservoir Hybrid System (Nakdong River, Korea): Its Role in Controlling the Phytoplankton Biomass (강-저수지 복합형 시스템내 봄 동물플랑크톤의 역동성 (낙동강, 한국): 식물플랑크톤 생체량 조절자로서의 역할)

  • Chang, Kwang-Hyeon;Jeong, Kwang-Seuk;Joo, Gea-Jae;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.420-426
    • /
    • 2003
  • During a three-year study (2000-2002), dramatic changes in the phytoplankton biomass and high transparency were repeatedly observed during mid-spring in the lower part of the Nakdong River. Rotifers (Brachionus, Keratella, Polyarthra) , sharply increased toward the middle and end of spring. As hydrologic retention time increased (to near 20 days) and water temperature increased from $10^{\circ}C$ to > $20^{\circ}C$ toward the end of spring, small cladocerans noticeably increased. Once phytoplankton biomass passed their peak stage in the mid-spring, a short period (one or two weeks) of relatively low phytoplankton biomass and high Secchi transparencies occurred. Grazing by the zooplankton was highest in spring, thus, it seems that high grazing activities of zooplankton grazing regulated phytoplankton dynamics in the river. The results indicate that the role of zooplankton grazing in controlling the phytoplankton biomass becomes more important during the spring when river water is relatively stagnant.

Grazing Relationship between Phytoplankton and Zooplankton in Lake Paldang Ecosystem (팔당호 생태계에서 동물플랑크톤과 식물플랑크톤의 섭식관계)

  • Uhm, Seong-Hwa;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.390-401
    • /
    • 2006
  • This study was conducted to understand the phytoplankton-zooplankton trophic linkage in Lake Paldang ecosystems (Paldang Dam and Kyungan Stream) from April to December 2005. Zooplankton were filtered as two size groups (microzooplankton (MICZ): 60{\sim}20\;{\mu}m$, macrozooplankton (MACZ): >$200\;{\mu}m$), and their clearance rates and C-fluxes on phytoplankton were measured. Grazing experiments were performed in the laboratory with the different zooplankton densities (0, 2, 4, 8x of ambient density, n=2). Diatoms, such as Aulacoseira and Cyclotella were dominant phytoplankton taxa at both sites. Among phytoplankton communities, total carbon biomass of phyflagellates was much higher than others at both sites. Rotifers numerically dominated zooplankton community, while cladocerans dominated carbon biomass. Both phytoplankton and zooplankton density and biomass were high in spring, but decreased markedly after summer monsoon season. plankton biomass at Kyungan Stream was significantly higher than that of Paldang Dam. Zooplankton clearance rate and amount of C-flux were relatively high in the spring and then decreased after summer at both sites. Seasonal change of C-flux was similar to that of zooplankton biomass (P<0.001, n=7). MACZ clearance rate and C-flux were higher than those of MICZ. Water residence time and physical disturbance in summer appeared to affect zooplankton grazing on phytoplankton at the study sites. Our results indicate phytoplankton were an important energy source for zooplankton in Lake Paldang ecosystem. Furthermore, C-flux of plankton food web is affected by not only biological components but also physical parameters.

Effects of Fish on the Grazing Pressure of Zooplankton in the Artificial Mesocosms (인공메소코즘에서 동물플랑크톤의 섭식압에 대한 어류의 영향)

  • Im, Ji Hyeok;Son, Se-Hwan;Kim, Jin Young;Oh, Min Woo;Nam, Gui-Sook;Song, Younghee;Lee, Ok-Min;Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.776-783
    • /
    • 2011
  • In a natural water body, a useful ecotechnology to reduce standing crops of phytoplankton is to strengthen the top-down force of zooplankton. However, the predation of fish for zooplankton can make the force weak. This study was conducted to find out the effect of fish on the grazing pressure of zooplankton in the mesocosms established in a eutrophic stream (Kyongan Stream) from October to November in 2010. In the corral with fish, chlorophyll a concentration increased, and a small size cladoceran Bosmina longirostris was dominant. In the corral without fish, chlorophyll a concentration decreased along with the domination of a large cladoceran Daphnia galeata and a large copepod Eudiaptomus japonicus. The size-selective predation of fish appeared to miniaturize the zooplankton community, to narrow their food-size spectrum, and to weaken the top-down force.

THE ROLE OF INSTANT NUTRIENT REPLENISHMENT ON PLANKTON SPECIES IN A CLOSED SYSTEM

  • Dhar, J.;Sharma, A.K.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.555-566
    • /
    • 2014
  • In this paper, we formulate two chemostat type models of phytoplankton and zooplankton population dynamics with instant nutrient recycling to study the role of viral infection on phytoplankton. The infection is transmitted only among phytoplankton population and it makes them more vulnerable to predation by zooplankton. It is observe that the chemostat system is very stable in the absence of viral infection but the presence of viral infection make the chemostat system sensitive with respect to the grazing rate of infected-phytoplankton by zooplankton. Further, if the grazing rate is less than certain threshold the system remain stable and exhibits Hopf-bifurcation after crossing it.

On the Feeding Behavior of Zooplankton in Lake Soyang (소양호에서 동물 플랑크톤의 섭식작용에 관한 연구)

  • 심두섭;안태석
    • Korean Journal of Microbiology
    • /
    • v.30 no.2
    • /
    • pp.129-133
    • /
    • 1992
  • Zooplankton feeding was investigated with epilluorescence microscope in Lake Soyang in August 1991. Zooplankton. which ingested fluorescence bead or fluorescently labeled bacteria (FLB). was regarded as bacterivore. The algavores wert. easily distinguished with autofluorescence of chlorophyll in gut. Copepoda nauplius and Copepodids. 7'hermocyclop.s spp, Pleosomcl spp. Brachionus spp were algavores. and DuphnB hpp. Bosmincr spp. Kerutrlla spp and Hrxuthru spp werc identified as bacterivc~res.T he mixo\ory was not detected. The percentages of algavores and bacterivores in Lake Hoyang were 65 7% and 34.3%. respectively. The bacterivorous zooplankton had trend to ingcst the beads bigger than 0.5 pm. Use of 0.5 pm bead as grazing tracer gave similar estin~ates of ingestion to FLR.

  • PDF

Effects of Freshwater Red Tide by Peridinium bipes on Microbial Loop in the Water Column of Soyang Reservoir (소양호에서 Peridinium bipes에 의한 적조가 수층 미생물 순환고리에 미치는 영향)

  • 강찬수;김상종
    • Korean Journal of Microbiology
    • /
    • v.29 no.6
    • /
    • pp.371-379
    • /
    • 1991
  • Effects of freshwater red tide of Peridinium bipes (dinoflagellate) in August of 1991 on the carbon flux through the microbial loop were studied in Soyang Reservoir. Chlorophyll a and primary production, bacterial production in red tide area were 22, 18 and 400 times higher, respectively, than other sites. Phytoplandton biomass comprised 97% and 20% of food source of zooplankton grazing within and without red tide, respectively. The percent bacterial production supported by phytoplankton exudate was 14% within red tide and >100% without red tide. In laboratory experiments, more than 85% organic carbon of Peridinium biomass was released or degraded by heterotrophic bacteria within 14 days. As results of red tide of Peridinium with sudden influx of organic carbon in water column, the main food source of zooplankton and dependency of bacteria on phytoplankton exudate were changed. Therefore, the relative importance of microbial loop to grazing food web was changed.

  • PDF

Multitrophic Interactions as a trigger of the Gyrodinium aureolum Bloom in Reeves Bay, New York (미국 뉴욕 Reeves만에서 쌍편모조류인 Gyrodinium aureolum의 대발생에 영향을 미친 먹이연쇄내의 상호작용)

  • Kim, Woong-Seo;Chang, Man;Shim, Jae-Hyung
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.268-276
    • /
    • 1992
  • Multitrophic interactions among gelatinous planktivores, zooplankton, and phytoplankton were in vestigated in Reeves Bay. New York from mid-March to July in 1989 to evaluate the top-down effect by gelatinous macrozooplankton on the Gyrodinium aureolum bloom through cascading tropic interactions. Zooplankton abundances reached maximal density following a decrease in gelatinous macrozooplankton (hydromedusae and scyphomedusae) abundances, and phytoplankton biomass was low at this time. Subsequently, as ctenophore populations increased zooplankton abundances decreased sharply, and the cell concnetration of G. aureolum began to increase. This field observation supports that the top-down control by gelatinous macrozooplankton on grazers, resulting in low grazing pressure on phytoplankton, can cause an algal bloom. The minimal zooplankton grazing measured using /SUP 14/C tracer technique during the bloom period indicated that zooplankton did not prefer G. aureolum as a good source.

  • PDF

Induction of colony formation in planktonic algae by substances released from grazer zooplankton

  • Kyong, Ha;Jang, Min-Ho;Joo, Gea-Jae;Bahk, Jae-Rim;Takamura, Noriko
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.11a
    • /
    • pp.198-200
    • /
    • 2001
  • Grager-Induced colony formation was examined using strains of green alga Scenedemus dimorphus (Turpin) Kutzing. Alga was cultured in a medium with or without filtered water in which Daphnia magna or Moina macrocopa had been reared. Colony formation was obviously promoted in S. dimorphus by exposure to zooplankton filtered water (ZFW), showing in proportion to the volume of zooplankton filtered water in cultured media. The particle volume as well as the number of cells per one colony of S. dimorphus increased between 24 and 48 hours after exposure to ZFW, which were caused by an infochemical released from from Daphnia or Moina probably as a part of defense mechanism against zooplankton grazing.

  • PDF