Browse > Article
http://dx.doi.org/10.14317/jami.2014.555

THE ROLE OF INSTANT NUTRIENT REPLENISHMENT ON PLANKTON SPECIES IN A CLOSED SYSTEM  

Dhar, J. (Department of Applied Sciences, Applied Mathematics Section, ABV-Indian Institute of Information Technology and Management)
Sharma, A.K. (Department of Mathematics, L.R.D.A.V. College)
Publication Information
Journal of applied mathematics & informatics / v.32, no.5_6, 2014 , pp. 555-566 More about this Journal
Abstract
In this paper, we formulate two chemostat type models of phytoplankton and zooplankton population dynamics with instant nutrient recycling to study the role of viral infection on phytoplankton. The infection is transmitted only among phytoplankton population and it makes them more vulnerable to predation by zooplankton. It is observe that the chemostat system is very stable in the absence of viral infection but the presence of viral infection make the chemostat system sensitive with respect to the grazing rate of infected-phytoplankton by zooplankton. Further, if the grazing rate is less than certain threshold the system remain stable and exhibits Hopf-bifurcation after crossing it.
Keywords
Plankton dynamics; viral infection; infected phytoplankton; nutrient recycling; stability; Hopf-Bifurcation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Bratbak, M. Levasseur, S. Michand, G. Contin, E. Fernandez, M. Heldel, Viral activity in relation to Emiliania Huxleyi bloom; a mechannism of DMSP release, Mar.Ecol.Progr.Ser. 128 (1995), 133-142.   DOI
2 C.P.D. Brussaard, G.J. Gast, F.C. Vanduyl, R. Reigman, Impact of phytoplankton bloom magnitude on a pelagic microbal food web, Mar.Ecol.Prog.Ser. 144 (1996), 211-221.   DOI
3 E. Beltrami, T.O. Carrol, Modelling the role of viral disease in recurrent phytoplankton bloom, J.Math.Biol. 32 (1994), 857-663.   DOI   ScienceOn
4 K.P. Hadder, H.I. Freedman, Predator prey population with parasite infection, J.Math.Biol. 27 (1989), 609-631.   DOI
5 H.I. Freedman, A model of predator prey dynamics as modified by the action of parasite, Math.Biosci 99 (1990), 143-155.   DOI   ScienceOn
6 J. Chattopadhayay, R.R. Sarkar, S. Mandal, Toxin produciing Plankton may act as abiological control for planktonic bloom-Field study and mathematical modeling, J.Biol.Theor 215(3) (2002), 333-344.   DOI   ScienceOn
7 K.D. Lafferty, A.K. Morris, Altered behavior of parasitized kill fish increases susceptibility to predation by bird final hosts, Ecology 77 (1996), 1390-1397.   DOI   ScienceOn
8 P. Peduzzi, M.G. Weinbauer, Effect of concentrating the virus-rich 2-200 nm size fraction of sea water on the formation of algal lock (marine snow), Limnol Oceanogr 38 (1993), 1562-1565.   DOI
9 H. Malchow, F.M. Hilker, S.V. Petrovskii, K. Brauer, Oscillation and waves in a virally infected plankton system, Ecol. Complexity 3 (2004), 211-223.
10 B.K. Singh, J. Chattopadhayay, S. Sinha , The role of virus infection in a simple phytoplankton zooplankton system, J.Theor. Boilogy 231 (2004), 153-166.   DOI   ScienceOn
11 C. Suttle, A.M. Chan, Marine Cyanophages infecting oceanicand coastal strain of Synechococcus: abudance , morphology, cross infectivity and growth characteristic, Mar Eco Prog.Ser 92 (1993), 99-109.   DOI
12 S. Khare, O.P. Misra, C. Singh, J. Dhar, Role of Delay on Planktonic Ecosystem in the Presence of a Toxic Producing Phytoplankton, Int. J. Diff. Equations 2011 (2011), http://dx.doi.org/10.1155/2011/603183.   DOI
13 S. Khare, O.P. Misra, J. Dhar, Role of toxin producing phytoplankton on a plankton ecosystem, Nonlinear Analysis: Hybrid Systems 4(3) (2010), 496-502.   DOI   ScienceOn
14 J. Dhar, A.K. Sharma, S. Tegar, The role of delay in digestion of plankton by fish population: A fishery model, The Journal of Nonlinear Sciences and its Applications 1(1) (2008), 13-19.
15 J. Dhar, R.S. Baghel, A.K. Sharma, Role of instant nutrient replenishment on plankton dynamics with diffusion in a closed system: A pattern formation, Applied Math. Compu. 218(17) (2012), 8925-8936.   DOI   ScienceOn
16 C. Suttle, A. Charm, M. Cottrell, Infection of phytoplankton by viruses and reduction of primary productivity, Nature 347 (1990), 467-469.   DOI
17 G. Bratbak, M. Levasseur, S. Michand, G. Cantain, E. Fernandez, M. Heldal, Viral activity in relation to Emiliania huxleyi bloom, a mechanism of DMSP release, Merine Progress Series 128 (1995), 133-142.   DOI
18 R.S. Baghel, J. Dhar, R. Jain, Bifurcation and spatial pattern formation in spreading of disease with incubation period in a phytoplankton dynamics, Electronic J. Diff. Equations 21 (2012), 1-12.
19 J. Dhar, A.K. Sharma, The role of viral infection in phytoplankton dynamics with the inclusion of incubation class, Nonlinear Analysis: Hybrid Systems 4(1) (2010), 9-15.   DOI   ScienceOn
20 J.L. Vanetten, L.C. Lane, R.H. Meints, Viruses and virus like particles of eukaryotic algae, Microbiol. Rev. 55 (1991), 586-620.
21 W. Reisser, Viruses and virus like particles of fresh water and marine eukaryotic algae-a review, Arch Protistenkunde 143 (1993), 257-265.   DOI   ScienceOn
22 J.C. Holmes, W.M. Bethel, Modification of intermediate host behavior of parasite in: E.V. Cunning, C.A.Wright,(Eds), Behavioral aspects of parasite transmission, Zool. J. Linn. Soc. 51 (1972), 123-149.
23 J.E. Truscott, J. Brindley, Ocean plankton population as excitable media, Bulletin of Math. Biol. 56 (1994), 991-998.
24 S. Agusti, C.M. Duarte, J. Kalff, Algal cell size and the maximum density and biomass of phytoplankton, Limnol. Oceangr. 32 (1987), 983-986.   DOI
25 J. Chattopadhayay, O. Arino, A predator prey model with disease in prey, J. Biosc. 180 (1999), 747-766.