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Zooplankton Grazing on Bacteria and Factors Affecting
Bacterial C-flux in Lake Paldang Ecosystem
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(Department of Environmental Science, Konkuk University, Seoul 143-701, Korea)

This study investigates bacteria-zooplankton grazing link and factors affecting their
grazing relationship at trophically different two sites (Paldang Dam and Kyungan
Stream) of Lake Paldang Ecosystem from April to December, 2005. Zooplankton were
divided into two size groups; microzooplankton (MICZ): 60-200 pm and macrozoo-
plankton (MACZ): >200 pm), and their grazing rates on bacteria were conducted for
each size group separately. Bacterial abundance and seasonal change pattern were
similar between two sites. MICZ, mostly rotifers (e.g., Brachionus, Keratella, Poly-
athra) were numerically dominant at both sites, while carbon biomass was highest
in cladocerans. Zooplankton biomass was higher at the Kyungan Steam site compar-
ed to Paldang Dam site, and their high biomass during spring decreased as they
were passing through the storm events in summer season at both sites. Zooplankton
clearance rate (CR) was high in spring and autumn while low in summer at Paldang
Dam site. However, zooplankton CR was high during the summer at Kyungan Stream
site. Bacterial C-flux was high in spring and autumn when MACZ (esp. cladecerans)
developed at a high biomass level at both sites. Overall, MACZ community CR and
carbon flux (C-flux) were higher than those of MICZ, and the degree of difference
between them was higher at Kyungan Stream site. Short hydraulic residence time
and physical disturbance caused by summer storm event appeared to affect the
zooplankton grazing on bacteria at both sites. The results of this study indicate that
bacteria are potentially important carbon source of zooplankton, and that both
biotic (e.g., prey and predator taxa composition and abundance) and physical
parameters appear to alter energy transfer in the planktonic food web of this river-
reservoir hybrid system.

Key words : bacteria, zooplankton, trophic link, clearance rate, carbon flux, Lake
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INTRODUCTION

Since the concept of ‘microbial loop’ (Azam et
al., 1983) in the aquatic ecosystems, bacteria
have become a major organism in the study of
plankton dynamics; e.g., energy transfer and
material cycling (Riemann and Sgndergaard,
1986; Pace et al., 1990; Wylie and Currie, 1991;
Hwang and Heath, 1999; Kim et al., 2000, 2002).

Accumulated evidence of the role of bacteria in
the plankton food web of various aquatic ecosys-
tems during last two decades formulated some
predictable hypotheses. One is that protists are
the major predator of bacteria (Wylie and Currie,
1991; Vaque et al., 1992). Also important is the
hypothesis that zooplankton community compo-
sition determines the degree of relative impor-
tance of bacteria as a zooplankton food source
(Pace et al., 1990; Hwang, 1995).
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These hypotheses as being considered more
specifically, however, seem not to obtain a pre-
vailing simple result among different environ-
ments. Although the most significant bacterial
consumers appear to be protists in various envi-
ronments (Vaqué et al., 1992), this result seems
to be variable, due to other predators such as
rotifers and metazoan consumers (e.g., Daphnia)
(Pace et al., 1990; Hwang and Heath 1997a). The
contribution of bacteria and phytoplankton as a
basic carbon sources to zooplankton in the whole
plankton food web seems also to be variable,
depending on the trophic status (Porter et al.,
1988; Heath et al., 2003). Thus, the hypotheses
being tested for the whole plankton food web
dynamics in terms of energy transfer seem not
hold a generalization along a trophic continuum
(e.g., Fenchel, 1988; Hwang 1997).

Although being less studied than above men-
tioned two hypotheses, researches of trophic
dynamics conducted in lotic ecosystems shed a
light on a generalization of detrimental factors of
energy transfer in the plankton food web. The
degree of grazing in the plankton food web
appears to be affected by physical disturbance of
water mass in addition to biological factors (David
et al., 2000). Particularly, storm events can crit-
ically disturb the community structure and graz-
ing relationship in the plankton food web (Dick-
man, 1969; Margalef, 1997; Quintana et al., 1998).
Kim et al. (2002) showed that residence time was
a critical factor to determine the zooplankton
abundance in a regulated large river system. In
this regard, water hydrology has a significance to
understand the trophic dynamics in river-reser-
voir hybrid systems, such as a large reservoir
constructed in the middle of river basin.

This study tries to understand the grazing
relationship between bacteria and zooplankton
in a large reservoir with combined hydraulic cha-
racteristics of river and reservoir. We selected
two study sites in the consideration of both
trophic status and residence time (the deepest
mesotrophic dam site and shallow eutrophic in-
flowing river site) in Lake Paldang ecosystem.
Thus, we hypothesize in this study that amount
of bacterial carbon transferred to zooplankton is
greater at the eutrophic river site, and the de-
gree of carbon transfer is largely affected by in-
coming river water hydrology due to the mon-
soon storm events.

MATERIALS AND METHODS

1. Study site and sampling

The Han River is the largest river system in
South Korea, and composed of three major tri-
butaries; the North Han River, the South Han
River and Kyungan Stream. Lake Paldang is
located at the junction of three rivers above men-
tioned. The river is hydrologically regulated by
building a multipurpose dam. Lake Paldang had
been impounded by building a dam in 1973. It is
located about 45 km northeast from Seoul, has a
storage capacity of 244 million tons of water
covering the watershed area of 23,713 km? (Cha
et al., 1977), and is the main water resource for
drinking and agricultural uses (Kong, 1997).
However, the construction of the dam accelerated
the eutrophication of the lake (Kim et al., 1998)
with the increased loading of external nutrients
(Kong, 1997). The investigated stations are Pal-
dang dam and Kyungan Stream sites (Kwang-
dong Bridge). Grazing experiments and sampling
were carried out at monthly basis with 7 occa-
sions from April through December of 2005, ex-
cept July and September. Rainfall data were
obtained from water management information
system (WAMIS).

2. Plankton community abundance and
biomass analyses

Duplicated water samples for bacterial enu-
meration were obtained from the surface water
(0.5 m depth) and fixed with 5% glutaraldehyde
solution (final concentration 1%). One milliliter
of each sample was diluted with 0.2 um-pre-fil-
tered distilled water to 1:100, and an 1 mL ali-
quot of each diluted sample was filtered through
a 0.2 um black GTBP Millipore membrane filter.
Bacteria on the filters were stained with DAPI
(4', 6-diamidino-2-phenylindole) according to Por-
ter and Feig (1980). At least 300 bacterial cells
were enumerated under x 1,000 magnification
using a Zeiss epifluorescent microscope and the
matched number of field area was used to calcu-
late bacterial abundance (cell mL™). Bacterial
carbon was estimated using a conversion factor
of 13.2 fgC cell™* (mean value of Laws et al.,
1984; Lee and Fuhrman, 1987; Nagata, 1988;
Simon and Azam, 1989; Wylie and Currie, 1991).

Zooplankton were sampled in duplicate by tow-
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ing a 64 pm plankton net vertically from the
depth of 8 m below the surface. Collected animals
were preserved with sucrose-formalin (1%, final
concentration) until analysis. The zooplankton
were divided into two size groups (microzooplank-
ton (MIC2Z): rotifer, nauplii, macrozooplankton
(MAC2Z): copepods, cladocerans) and were count-
ed with an inverted microscope (Zeiss) at x 100
magnification. Zooplankton size and biomass
were measured separately with 10 individuals of
each taxon. Biovolume of each rotifer taxon was
determined by applying the formula for the most
closely matching solid geometric shape (Downing
and Rigler, 1984). Fresh weight (ug) was calcu-
lated from biovolume (um?) by the factor of 1.025
(Hall et al., 1976), and dry weight (ug) was treat-
ed as a tenth of fresh weight (Pace and Orcutt,
1981). Dry weight of cladocerans and copepods
was determined using published length-weight
relationships (Culver et al., 1985). Carbon con-
tent was converted from dry weight by multiply-
ing a factor of 0.48 (Anderson and Hessen, 1991).

3. Measurements of zooplankton clearance
rates (CR) and bacterial carbon flux
(C-flux)

Zooplankton grazing experiments were conduct-
ed according to Lehman and Sandgren (1985)
method. Clearance rates (mL - pgdw™* - d*) and
carbon flux (ugC - L™* - hr™) were determined
experimentally by manipulating grazer zooplank-
ton densities. The grazing experiments were
conducted with two size groups (MICZ: 60-200
pm; MACZ: >200 um) separately.

Zooplankton treatments were established by
filling 2 L bottle with ambient water through 60
pm mesh filter and subsequently inoculating zoo-
plankton (MICZ, MACZ) at densities of x2, x4,
x 8 of ambient levels. The treatment with no zoo-
plankton (control) also was accompanied in each
replication. All MICZ and MACZ treatments
were duplicated. All bottle were incubated in am-
bient temperature with 12L : 12D light condition
for 24 h. Duplicated initial and final aliquots (50
mL) for bacteria were removed from the bottles,
preserved and enumerated as mentioned above.
Bacterial growth rate in each treatment was
estimated using the following equation.

r=(InN¢—InNog)/t
r=the rate of population growth (day ™)

N:=final cell density (cells - mL™)
No=initial cell density (cells - mL™)
t=duration of incubation (day)

The relationship between bacterial growth rate
and zooplankton biomass was assessed by a least
squared linear regression. The slope of this
relationship provides an estimate of the biomass-
specific clearance rates (mL - pgdw™ - d*). Car-
bon flux (ugC - L™! - hr™*) of bacteria to MICZ
and MACZ was calculated by the following equa-
tion.

BCF=CRxBxZx (24 hr day ™)

BCF=bacterial C-flux to zooplankton
(MgC - L7 - hr'h
CR=clearance rate (mL - pgdw™* - hr'%)
B=bacterial carbon biomass (ugC - L™
Z=ambient zooplankton biomass (ugdw -
L™

4. Statistical analysis

Analysis of variance (ANOVA) was used to
compare bacterial abundance and biomass, zoo-
plankton abundance and biomass, clearance
rates and bacterial carbon fluxes between two
sites and sampling times (SPSS 10.0). Statistical
significance was identified at P < 0.05.

RESULTS

1. Bacterial abundance and carbon biomass

Bacterial abundance changed at a great degree
during the study period at both sites, ranging
from 2.8 x 10° to 64.7 x 10°cell - mL™* at Paldang
Dam site and from 6.1 x 10° to 43.3 x 10° cell -

Table 1. Bacterial abundance and biomass at Paldang
Dam and Kyungan Stream site.

Paldang Dam Kyungan Stream

Month Abundance Abundance

Biomass 6 Biomass

x 10%cells : x 10°cells .
(08 qoc -1y (109 qgc- LY
Apr. 2.8+0.2 373+ 0.1 6.1+04 81.0+ 0.8
May 6.5+0.3 86.1+13.8 7.9+0.2 104.7+19.4

Jun. 172404 227.1+11.6 43.3+7.7 570.9+56.1
Aug. 24.8+1.0 326.7%+12.7 16.0£2.9 211.4+38.7
Oct. 26.2+3.0 3459+39.8 38.3+1.6 506.0+20.9
Nov. 64.7+7.5 853.3+£99.0 324+0.5 427.9+ 6.0
Dec. 22.3+0.3 3022+ 4.0 28.2+0.5 372.2+ 6.0
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Fig. 1. Zooplankton abundance and relative proportion of major zooplankton groups at Paldang Dam and Kyungan Stream

site.

mL ™! at Kyungan Stream site (Table 1). Seasonal
change pattern of bacterial abundance between
two sites was similar with the increase of abun-
dance towards summer and autumn, except an
abrupt decrease at Kyungan Stream site in Au-
gust due to a large storm event. Bacterial carbon
biomass ranged from 37.3 to 853.3 ugC - L™* and
81.0 to 570.9 ugC - L* at Paldang Dam and
Kyungan Stream site, respectively.

2. Zooplankton abundance, biomass and
community composition

Overall, zooplankton abundance was high dur-
ing spring season, while very low for the rest of
the time (Fig. 1). Particularly, total zooplankton
abundance abruptly decreased during summer
monsoon season. Total zooplankton biomass was
significantly higher at Kyungan Stream than at
Paldang Dam site (P <0.05, n=7, ANOVA)

Dominant zooplankton taxa at Paldang Dam
site were Brachionus spp., Keratella spp., Poly-
athra spp., Pompholyx spp., Daphnia spp., Dia-

phanosoma spp. and nauplii, and they contribut-
ed greater than 90% of total abundance. Rotifer
was the most dominant group (>90%) with the
average abundance of 1924280 ind. L™* followed
by cladocerans (11+17 ind. L™%), and copepods (8
+10ind. L™). Unlike abundance, carbon biomass
was highest in the cladoceran group (Fig. 2).
Dominant zooplankton taxa at Kyungan Stream
site were Brachionus spp., Keratella spp., Poly-
athra spp., Bosmina spp., Daphnia spp., copepo-
did, and nauplii. Average abundance of rotifers,
cladocerans, and copepods was 233+410ind. L™,
58+119ind. L™, and 114+122 ind. L™, respec-
tively (Fig. 1). Proportion of rotifers in the total
abundance at Kyungan Stream site was lower
(58%) compared to Paldang Dam site, while macro-
zooplankton proportion (cladocedran: 28%, cope-
pods 14%) was higher at Kyungan Stream site.
Particularly, cladocerans including Bosmina
longirostris and Daphnia sp. markedly increased
after August at Kyungan Stream site, and thus
occupied 60-80% of total zooplankton abundance
(Fig. 2). Cladoceran biomass was highest in May,
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Fig. 2. Zooplankton carbon biomass and relative proportion of major zooplankton groups at Paldang Dam and Kyungan

Stream site.

due to the abrupt increase of Daphnia.

3. Zooplankton clearance rate (CR) and
carbon flux (C-flux)

Average zooplankton CR on bacteria was high-
er at Kyungan Stream site than at Paldang Dam
site (Table 2) (P<0.05, n=7, ANOVA). At Pal-
dang Dam site, zooplankton CR showed a signifi-
cant seasonal variation (P<0.05, n=7, ANOVA),
with high value in spring and autumn but low
value in summer, ranging from 0.34 to 3.60 mL -
pgdw™* - d* (average: 1.87+1.2mL - pgdw ' - d™)
for MICZ, and from 0.03 t0 2.83mL - pgdw* - d*
(average: 1.55+1.1mL - pgdw ' - d*) for MACZ.
Unlike Paldang Dam site, zooplankton CR was
high in summer at the Kuyngan Stream site, and
CR ranged from 0.31 to 1.25 mL - ugdw™* - d*
(average: 0.70+0.4 mL - ugdw™* - d%) for MICZ,
and from 0.06 to 1.92mL - ugdw™ - d* (avergae:
0.53+0.7mL - ugdw™* - d*) for MACZ.

Overall bacterial C-flux to zooplankton was
relatively high at Kyungan Stream site in ac-

Table 2.

Clearance rates (CR: mL - ugdw™ - d™%) of zoo-
plankton on bacteria and significance level of
the regression at Paldang Dam and Kyungan
Stream site.

Paldang Dam Kyungan stream
CR n r CR n r?
Apr. 034 8 0.77** 043 8 0.59*
May 281 8 0.86** 034 8 0.59*
Jun. 077 8 0.88** 125 8 055*
O Aug. 094 8 028 1.10 8 0.04
S Oct. 211 8 011 079 8 0.71**
Nov. 360 8 044 031 8 037
Dec. 250 8 0.30 067 8 044
Avg. 1.87+1.2 0.70+0.4
Apr. 084 8 0.73** 029 8 0.99%**
May 266 8 0.80** 007 8 0.84**
, Jun. 003 8 085+ 089 8 017
O Aug. 084 8 016 192 8 0.26
< oct. 283 8 o031 006 8 055*
Nov. 115 8 0.83** 012 8 0.92***
Dec. 252 8 016 034 8 0.72**
Avg. 1.55+1.1 0.53+0.7

*p<0.05, **p<0.01, ***p<0.001



Zooplankton Grazing on Bacteria and Factors Affecting Bacterial C-flux

Paldang Dam
1.0

0.8

0.6

0.4

C-flux(mgCL1hr 1)

0.24

0.0

Percent C-flux

Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
2005

C-flux(mgCL-1hr1)

Percent C-flux

429

Kyungan Stream
2.0

g
o

=
(N}

o
e

o
N

0.0-

— MICZ
= \VIACZ

Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
2005

Fig. 3. Seasonal variation of bacterial C-flux and its relative proportion between MACZ and MICZ at Paldang Dam and

Kyungan stream site

cordance with zooplankton CR (P<0.05, n=7,
ANOVA) (Fig. 3). Bacterial C-flux ranged from
0.004 to 0.239 ugC - L' - hr! (average: 0.091+
0.08 ugC - L™* - hr™*) for MICZ and from 0.037 to
0.718 ugC - L™* - hr * (average: 0.291+0.26
ugC - L™t - hr't) for MACZ at Paldangg Dam site
during the study period. Most bacterial carbon
was transferred to MACZ (average: 72%) com-
pared to MICZ (28%) (P <0.05, n=7, ANOVA) ex-
cept for June. In consistent with CR, bacterial C-
flux was high in spring and autumn.

MACZ was always more important bacterial
grazers in terms of bacterial C-flux at Kyungan
Stream site relative to MICZ (P<0.05, n=7,
ANOVA); average 84% of bacterial carbon trans-
ferred to MACZ during the study period (Fig. 3).
Amount of bacterial C-flux ranged from 0.006 to
0.389 ugC - L' - hr ! (average: 0.098+0.14
ugC - L™t - hrY) for MICZ and from 0.147 to
0.889 ugC - Lt - hr ! (average: 0.452+0.26
pugC - L™ - hr'h) for MACZ ay Kyungan Stream
site. Bacterial C-flux was high in spring and
autumn.

DISCUSSION

The values of zooplankton CR and bacterial C-
flux analyzed in this study lie in the comparable
range to those obtained from other studies con-
ducted in various environments (Table 3), sug-
gesting that Lake Paldang ecosystem be support-
ing the bacterial-based microbial food web. Our
results do not mean that algae-based food web is
not important in this ecosystem. A companion
study also showed that algal C-flux to zooplank-
ton was comparable and often higher than bac-
terial C-flux (Hwang, 2006), in supportive of pre-
vious studies (Hwang and Heath, 1997a). How-
ever, our intention in this study is to evaluate
the potential importance of bacterial-based mi-
crobial food web in Lake Paldang ecosystem. The
results of trophic dynamics of whole plankton
food web in Lake Paldang will soon be published.

Our results of difference of bacterial C-flux bet-
ween two sites agree with a hypothesis that the
degree of bacterial carbon transfer varies with
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Table 3. Comparison of literature values of clearance rate (mL - L™ - hr™%) and bacterial carbon flux (ugC - L™ - hr™%).

Redator Prey CR C-flux References
Metazooplankton 0.5 um fluorescent 0.0-0.7
Rotifer hicropheres 0.0-0.7 Agasild and Noges (2005)
Cladocerans 0.0-0.3
Zooplankton (> 140 pm) 3H-labelled bacteria 0.0-33.0 0.333-7.5 Jeppesen et al. (1996)
MACZ (>200 pum) In situ bacteria 3.3£1.0 0.83+0.17 Hwang and Heath (1999)
MICZ (40-200 pm) 8.0+5.1 2.20+1.29 (Eutrophic river)
MACZ (>200 um) In situ bacteria 1.5+05 0.11+0.04 Hwang and Heath (1999)
MICZ (40-200 pm) 46+2.4 0.23+0.15 (Oligo-mesotrophic lake)
MACZ (> 157 um) 0.75 um fluorescent 0.8+2.4 0.0004-0.296 )
MICZ (< 157 pm) micropheres 2.1+4.0 0.001-0.417 Kim et al. (2000)
MACZ (> 200 pm) . . 0.3-7.1 0.037-0.718 .
MICZ (60-200 um) In situ bacteria 01-11 0.004-0.239 This study (Paldang Dam)
MACZ (>200 pm) . . 0.7-4.0 0.147-0.889 .
MICZ (60-200 ) In situ bacteria 002-18 0.006-0.389 This study (Kyungan Stream)

the trophic condition (Hwang, 1997), which de-
termines abundance of bacteria and zooplankton,
and their composition (Pace et al., 1990; Weisse
et al., 1990; Wylie and Currie, 1991; Hwang and
Health, 1997b). In this study, bacterial C-flux
was higher at the more eutrophic Kyungan
Stream site than at the mesotrophic Paldang
Dam site in spite of similar bacterial abundance
between both sites, indicating that zooplankton
community composition and biomass were likely
important factors to control bacterial C-flux in
Lake Paldang ecosystem. The community com-
position of phytoplankton also seems to be im-
portant to affect bacterial C-flux to zooplankton
in our study ecosystem (Lampert, 1987). The
high bacterial C-flux during October and Novem-
ber at Paldang Dam site, relative to the same
period at Kyungan Stream site, appeared to be
related with the bloom of unpalatable filamen-
tous diatom (Aulacoseira spp.) at Paldang Dam
site (Uhm and Hwang, 2006).

On an individual basis of the grazer, overall
bacterial C-flux may depend on the combination
of three factors; i.e., body size (Knoechel and Holt-
by, 1986), feeding mechanism (Moralities and
Lacroix, 1990), and abundance (Hwang and Hea-
th, 1999). The result that large metazoan zoo-
plankton was much more important grazers in
our study system might be related with that effi-
cient MACZ (usually cladocerans) having a high
clearance rate dominated the zooplankton com-
munity at most times (Figs. 1, 3). Thus, MACZ

might be competitively superior to MICZ in graz-
ing bacteria (Burkill et al., 1995; Kim et al.,
2003). However, MICZ, mostly rotifers, were
reported to be more important than MACZ in
certain environments, where bacterivorous roti-
fers develop at high level of abundance (Havens,
1994; Arndt and Heerkloos, 1989; Lair and Ali,
1990; Christoffersen et al., 1990). Relatively high
bacterial C-flux to MICZ was observed in June at
Paldang Dam site and April at Kyungan Stream
site in accordance with the development of Kera-
tella cochlearis and Brachionus angularis, res-
pectively.

On the other hand, copepods are reported to be
inefficient in grazing on bacteria in most envi-
ronments (Pedros-Alio and Brock, 1983; Forsyth
and James, 1984; Hwang and Heath, 1999). This
was also the case in this study. However, cope-
pods, owing to their feeding mechanism (raptori-
al feeding), usually graze actively moving protis-
tan organisms (flagellates and ciliates) (Stoecker
and Capuzzo, 1990; Gifford, 1991; Wylie and
Currie, 1991; Burns and Gilbert, 1993), and,
thus their role in the microbial food web is likely
to support an indirect bacterial C-flux pathway
to higher trophic levels, from bacteria through
protists to copepods (Burns and Schallenberg,
1996; Hwang and Heath, 1997a).

Although it is not well demonstrated through-
out aquatic ecosystems, hydrologic and hydraulic
parameters which result in physical disturbance
might as well to affect plankton dynamics (David
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Fig. 4. Seasonal change of bacterial C-flux and rainfall
pattern at Paldang Dam and Kyungan Stream
site.

et al., 2000). Particularly, heavy storms in the
monsoon climate region can modify communities
of aquatic ecosystem (Dickman, 1969), and thus
resulting physical disturbance could set the graz-
ing relationship unstable (Margalef, 1997; Quin-
tana et al., 1998). Our results of the contrasting
pattern of change between bacterial C-flux and
the intensity of precipitation (Fig. 4) indicate a
probable effect of hydrology on the zooplankton
grazing on bacteria, possibly through flushing
and large input of suspended sediments (Shin et
al., 2004). Additionally, an intense storm during
a short period of time may keep a harmful effect
for a longer period of time (Descy, 1993; Muylaert
et al., 2001). This fact also supports our result
that although storm events markedly decreased
bacterial C-flux during the monsoon storm peri-
od, it did not reached back to the level of the spr-
ing C-flux after then (Fig. 4). There also are

other factors engaged in the variation of bac-
terial C-fluxes in aquatic ecosystems. Fish preda-
tion is well known to affect plankton dynamics
(e.g., Kerfoot and Sih, 1987; Polis and Winemil-
ler, 1996), and thus, we believe that fishes were
likely to affect on bacterial C-flux in our study
ecosystem. This aspect is open to study in the
future.

In conclusion, our results demonstrate that
bacteria are a potential energy source for zoo-
plankton through the direct grazing in Lake
Paldang ecosystem. In supportive of proposed
hypotheses of this study, bacterial C-flux was
higher in more eutrophic environment, which
supports development of large efficient metazoan
filter feeders, and physical disturbance caused by
the storm events appeared to be a potentially
important factor to alter the degree of bacterial
carbon transfer to zooplankton in our studied
river-reservoir hybrid system.
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