Browse > Article

Grazing Relationship between Phytoplankton and Zooplankton in Lake Paldang Ecosystem  

Uhm, Seong-Hwa (Department of Environmental Science, Konkuk University)
Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
Publication Information
Abstract
This study was conducted to understand the phytoplankton-zooplankton trophic linkage in Lake Paldang ecosystems (Paldang Dam and Kyungan Stream) from April to December 2005. Zooplankton were filtered as two size groups (microzooplankton (MICZ): 60{\sim}20\;{\mu}m$, macrozooplankton (MACZ): >$200\;{\mu}m$), and their clearance rates and C-fluxes on phytoplankton were measured. Grazing experiments were performed in the laboratory with the different zooplankton densities (0, 2, 4, 8x of ambient density, n=2). Diatoms, such as Aulacoseira and Cyclotella were dominant phytoplankton taxa at both sites. Among phytoplankton communities, total carbon biomass of phyflagellates was much higher than others at both sites. Rotifers numerically dominated zooplankton community, while cladocerans dominated carbon biomass. Both phytoplankton and zooplankton density and biomass were high in spring, but decreased markedly after summer monsoon season. plankton biomass at Kyungan Stream was significantly higher than that of Paldang Dam. Zooplankton clearance rate and amount of C-flux were relatively high in the spring and then decreased after summer at both sites. Seasonal change of C-flux was similar to that of zooplankton biomass (P<0.001, n=7). MACZ clearance rate and C-flux were higher than those of MICZ. Water residence time and physical disturbance in summer appeared to affect zooplankton grazing on phytoplankton at the study sites. Our results indicate phytoplankton were an important energy source for zooplankton in Lake Paldang ecosystem. Furthermore, C-flux of plankton food web is affected by not only biological components but also physical parameters.
Keywords
C-flux; clearance rate; Lake Paldang; phytoplankton; trophic linkage; zooplankton;
Citations & Related Records
연도 인용수 순위
  • Reference
1 국립환경연구원. 1996. 호소내 오염하천 유입부의 식물에 의한 정화처리 연구(II), NIER No. 96-17-488
2 국립환경연구원. 2003. 낙동강수계 수중생태계 모델인자 조사. 최종보고서
3 김종민, 박준대, 노혜란, 한명수. 2002. 소양호와 팔당호의 수질 의 수직 및 계절적 변화. 육수지 35: 10-20
4 서윤수, 이길철, 김동군, 유재근, 이인선, 송준상, 허성남. 1989. 수질환경기준달성 최적화 방안에 관한 연구 (I): 팔당댐 유 역수질 및 유출부하량. 국립 환경연구원보 11: 143-152
5 이 경, 정영호. 1983. 한강 중심수역의 규조류에 대한 계절적 소장과 분포에 따른 상관관계, 성심여자대학 논문집 14: 37-47
6 Andersen, A. and D.O. Hessen. 1991. Carbon, nitrogen, and phosphorus contents of freshwater zooplankton. Limnol. Oceanogr. 36: 807-814   DOI   ScienceOn
7 APHA-AWWA-WEF. 1995. Standard methods for the examination of water and wastewater. 19th ed., APHAAWWA- WEF. Washington D.C. USA
8 Balcer, M.D., N.L. Korda and S.I. Dodson. 1984. Zooplankton of the great lakes. A guide to the identification and ecology of the common crustacean species. The university of Wisconsin Press
9 Brock, T.D. 1985. A Eutrophic Lake, Lake Mendota, Wisconsin. Springer-Verlag. New York. p. 308
10 Gilbert, J.J. 1989. The effect of daphnia interference on a natural rotifer and ciliate community: short term bottle experiments. Limnol. Oceanogr. 34: 606-617   DOI   ScienceOn
11 Hall, D.T., S.T. Threlkeld, C.W. Burns and P.H. Crowley. 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Annual Review of Ecology and Systematics 7: 177-208   DOI
12 Hwang, S.J., H.S. Kim, J.K. Shin and J.M. Oh. 2004. Grazing effects of a freshwater bivalve (Corbiclua leana Prime) and large zooplankton on phytoplanton communities in two Korean lakes. Hydrobiol. 515: 161-179   DOI   ScienceOn
13 Keckeis, S., C. Baranyi, T. Hein, C. Holarek, P. Riedler and F. Schiemer. 2003. The significance of zooplankton grazing in a floodplain system of the River Danube. J. Plankton Res. 25: 243-253   DOI   ScienceOn
14 Pace, M.L. and D. Vaque. 1994. The importance of Daphnia in determining mortality rates of protozoans and rotifers in lakes. Limnol. Oceanogr. 39: 985-996   DOI   ScienceOn
15 Reynolds, C.S. 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge
16 Pirjo, S.H., M.T. Brett and C.R. Goldman. 1999. Temporal and vertical dynamics of phytoplankton net growth in Castle Lake, California. J. Plankton Res. 21: 373-385   DOI   ScienceOn
17 Quintana, X.D., R. Moreno-Amich and F.A. Comín. 1998a. Nutrient and plankton dynamics in a Mediterranean salt marsh dominated by incidents of flooding. Part 1: Differential confinement of nutrients. J. Plankton Res. 20: 2089-2107   DOI
18 Quintana, X.D., F.A. Comín and R. Moreno-Amich. 1998b. Nutrient and plankton dynamics in a Mediterranean salt marsh dominated by incidents of flooding. Part 2: Response of a zooplankton community to disturbances. J. Plankton Res. 20: 2109-2127   DOI
19 Reynolds, C.S. 1994. The ecological basis for the successful biomanipulation of aquatic communities. Arch. Hydrobiol. 139: 1-33
20 Stemberger, R.S. 1979. A guide to rotifers of the Laurentian Great Lakes. EPA-600/4-79-021
21 Ward, P., A. Atkinson, A. Murray, A.G. Wood, R. Williams and S.A. Poulet. 1995. The summer zooplankton community at South Georgia: biomass, vertical migration and grazing. Polar Biol. 15: 195-208
22 Kim, H.W. and G.J. Joo. 2000. The longitudinal distribution and community dynamics of zooplankton in a regulated large river: a case study of the Nakdong River (Korea). Hydrobiol. 438: 171-184   DOI   ScienceOn
23 David, G.A., M. Alvarez-Cobelas, C. Rojo and S. Sánchez- Carrillo. 2000. The significance of water inputs to plankton biomass and trophic relationships in a semiarid frewater wetland (central Spain). J. Plankton Res. 22: 2075-2093   DOI   ScienceOn
24 Strathmann, R.R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411-418   DOI   ScienceOn
25 Kim, H.W., K.H. Chang, K.S. Jeong and G.J. Joo. 2003. The spring metazooplankton dynamics in the riverreservoir hybrid system (Nakdong River, Korea): Its role in cintrolling the phytoplankton biomass. Korean J. Limnol. 36: 420-426
26 조규송. 1993. 한국담수동물플랑크톤 도감. 아카데미서적
27 Dickman, M. 1969. Someeffects of lake renewal on phytoplankton productivity and species composition. Limnol. Oceanogr. 14: 660-666   DOI   ScienceOn
28 Hwang, S.J. 1995. Carbon dynamics of plankton communities in nearshore and offshore Lake Erie: The significance of the microbial loop for higher trophic levels. PhD Dissertation, Kent State University, Kent, OH
29 Kim, H.W., K. Ha and G.J. Joo. 1998. Eutrophication of the lower Nakdong River after the construction of an estuarine dam in 1987. Internat. Rev. Hydrobiol. 83: 65-72   DOI
30 Walz, N. and M. Welker. 1998. Plankton development in a rapidly flushed lake in the River Spree system (Neuendorfer See, Northeast Germany). J. Plankton Res. 20: 2071-2087   DOI
31 Shiel, R.J. and K.F. Walker. 1984. Zooplankton of regulated and unregulated rivers: The murray darling river system, Australia. In 'Regulated Rivers.' (Eds. Lillehammer, A. and S.J. Saltveit) p. 263-270 (University of Oslo Press: Oslo)
32 Thys, I., B. Lesporcq and J.P. Descy. 2003. Seasonal shifts in phytoplankton ingestion by Daphnia galeata, assessed by analysis of marker pigments. J. Plankton Res. 25: 1471-1484   DOI   ScienceOn
33 Holland, M.M. 1996. Wetlands and environmental gradients. In: Mulamootil, G., B.G. Warner and E.A. McBean (eds), Wetlands: Environmental Gradients, Boundaries and Buffers. CRC Lewis Publishers, Boca Raton. p. 19- 43
34 Brett, M.T., K. Wiackowski, F.S. Lubnow, A. Mueller- Solger, J.J. Elser and C.R. Goldman. 1994. Speciesdependent effects zooplankton on planktonic ecosystem processes in castle lake, California. Limnol. Oceanogr. 75: 2234-2254
35 Baranyi, C., T. Hein, C. Holarek, S. Keckeis and F. Schiemer. 2002. Zooplankton biomass and community structure in a Danube River floodplain. Freshwat. Biol. 47: 473-482   DOI   ScienceOn
36 Descy, J.-P. 1993. Ecology of the phytoplankton of the river Moselle-effects of disturbances on community structure and diversity. Hydrobiol. 249: 111-116   DOI
37 Mullin, M.M., P.R. Sloan and R.W. Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11: 307-310   DOI   ScienceOn
38 Gawler, M., G. Balvay, P. Blanc, J.-C. Druat and J.P. Pelletier. 1988. Plankton ecology of Lake Geneva: a test of the PEG-model. Arch. Hydrobiol. 114: 161-174
39 Carrick, H.J., G.L. Fahnenstiel, E.F. Stoermer and R.G. Wetzel. 1991. The importance of zooplankton-protozoan trophic coupling in Lake Michigan. Limnol. Oceanogr. 36: 1335-1345   DOI   ScienceOn
40 Downing, J.A. and F.H.R. Rigler. 1984. A manual on methods for the assessment of secondary productivity in freshwaters. Blackwell Scientific Publications. p. 247-249
41 Vanni, M.J. and J. Temte. 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limnol. Oceanogr. 35: 697-709   DOI   ScienceOn
42 정영호, 이 경. 1981. 팔당댐 수역을 중심으로 한 식물성플랑 크톤의 현존량과 생산력, 자연보존연구보고서 3: 383-390
43 Sommer, U., Z.M. Gliwicz, W. Lampert and A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433- 471
44 Strickland, J.D. and T.R. Parsons. 1972. A pratical handbook of seawater analysis. Bulletin of Fisheries Research Board of Canada 167: 65-70
45 김종민, 노혜란, 허성남, 양희정, 박준대. 2005. 강우 및 유입 하 천수가 팔당호 수질에 미치는 영향분석. 한국물환경학회지 21: 277-283
46 환경부. 1996. 수질오염공정시험방법
47 Kellar, P.E., S.A. Paulson and L.J. Pauloson. 1980. Methods for biological, chemical and physical analyses in reservoirs. Technical Report, Lake Mead Limnological Research Center, University of Nevada, Las Vegas, p. 234
48 한명수, 홍성수, 어윤열. 2002. 팔당호의 생태학적 연구 4.경안 천 하류의 영양염 및 입자태 유기물 거동과 식물플랑크톤 천이. 육수지 35: 1-9
49 Lampert, W., W. Flecker, H. Rai and B.E. Taylor. 1986. Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase. Limnol. Oceanogr. 31: 478-490   DOI   ScienceOn
50 Stanley, E.H., S.G. Fisher and N.B. Grimm. 1997. Ecosystem expansion and contraction in streams. Bio Science 47: 427-435   DOI   ScienceOn
51 Kagami, M., T. Yoshida, T.B. Gurung and J. Urabe. 2002. Direct and indirect effects of zooplankton on algal composition in in situ grazing experiments. Oecologia 133: 356-363   DOI
52 Marker, A.F.H. 1972. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshwat. Biol. 2: 361-385   DOI
53 Wickham, S.A. and J.J. Gilbert. 1991. Relative vulnerabilities of natural rotifer and ciliate communities to cladocerans: laboratory and field experiments. Freshwater Biol. 26: 77-86   DOI
54 Burkill, P.H., E.S. Edwards and M.A. Sleigh. 1995. Microzooplankton and their role in controlling phytoplankton growth in the marginal ice zone of the Bellingshausen Sea. Deep Sea Res II. 42: 1277-1290   DOI   ScienceOn
55 Johnston, C.A. and R.J. Naiman, 1987. Boundary dynamics at the aquatic-terrestrial interface: The influence of beaver and geomorphology. Landscape Ecol. 1: 47-57   DOI
56 Landry, M.R., C.J. Lorenzen and W.K. Peterson. 1994. Mesozooplankton grazing in the Southern California Bight. II. Grazing impact and particulate flux. Mar Ecol Prog Ser. 115: 73-85   DOI
57 Margalef, R. 1997. Our Biosphere. Excellence in Ecology 10. Ecology Institute, Oldenburg/Luhe, Germany
58 Perissinotto, R. 1992. Mesozooplankton size-selectivity and grazing impact on the phytoplankton community of the Prince Edward Archipelago (Southern Ocean). Mar Ecol Prog Ser. 79: 243-258   DOI
59 Culver, D.A., M.M. Boucherle, D.J. Bean and J.W. Flethcer. 1985. Biomass of freshwater crustacean zooplankton from Length-Weight regressions. Can. J. Fish. Aquat. Sci. 42: 1380-1390   DOI
60 Heath, R.T., S.J. Hwang and M. Munawar. 2003. A hypothesis for the assessment of the importance of microbial food web: Linkages in nearshore and offshore habitats of the Laurentian Great Lakes. Aquatic Ecosystem Health & Management 6(3): 231-239   DOI
61 Dawidowicz, P. 1990. Effectiveness of phytoplankton control by large-bodied and small-bodued zooplankton. Hydrobiol. 200/201: 43-47   DOI
62 Kim, H.W., S.J. Hwang and G.J. Joo. 2000. Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). J. Plankton Res. 22: 1559-1577   DOI   ScienceOn
63 Muylaert, K. and W. Vyverman. 2006. Impact of a flood event on the planktonic food web of the Schelde estuary (Belgium) in spring 1998. Hydrobiol. 559: 385-394   DOI
64 Scavia, D. and G.L. Fahnenstiel. 1987. Dynamics of Lake Michigan phytoplankton: Mechanisms controlling epilimnetic communities. J. Great Lakes Res. 13: 103-120   DOI
65 Kim, H.W., S.J. Hwang, K.H. Kim, M.H. Jang, G.J. Joo and N. Walz. 2002. Longitudinal difference in zooplankton grazing on phyto- and bacterioplankton in the Nakdong River (Korea). Internat. Rev. Hydrobiol. 87: 281-293   DOI   ScienceOn
66 Muylaert, K., J.V. Wichelen, K. Sabbe and W. Vyverman, 2001. Short-term phytoplankton dynamics in a freshwater tidal estuary. Arch. Hydrobiol. 150: 269-288   DOI
67 Akiyoshi, S., S. Ban and T. Ikeda. 2003. Seasonal change in nano/micro-Zooplankton herb ivory and heterotrophic nano-flagellates bacterivory off Cape Esan, Southwestern Hokkaido, Japan, J. of Oceanogr. 59: 609-618   DOI
68 Kitchell, J.F. and S.R. Carpenter. 1996. Cascading trophic interaction. In S.R. Carpenter & J.F. Kitchell (eds), The trophic cascade in Lakes. Cambridge University Press. p. 1-14
69 Sterner, R.W. 1989. The role of grazers in phytoplankton succession. In Sommer U (ed) Plankton ecology: succession in plankton communities. Springer, Berlin Heidelberg New York, p. 107-170
70 Lehman, J.T. and C.D. Sandgren. 1985. Species-specific rates of growth and grazing loss among freshwater algae. Limnol. Oceanogr. 30: 34-46   DOI   ScienceOn