Zooplankton Grazing on Bacteria and Factors Affecting Bacterial C-flux in Lake Paldang Ecosystem

팔당호 생태계에서 동물플랑크톤의 박테리아 섭식 및 영향인자

  • Published : 2006.12.30

Abstract

This study investigates bacteria-zooplankton grazing link and factors affecting their grazing relationship at trophically different two sites (Paldang Dam and Kyungan Stream) of Lake Paldang Ecosystem from April to December, 2005. Zooplankton were divided into two size groups; microzooplankton (MICZ) : 60-200 ${\mu}m$ and macrozooplankton (MACZ): >200 ${\mu}m$), and their grazing rates on bacteria were conducted for each size group separately. Bacterial abundance and seasonal change pattern were similar between two sites. MICZ, mostly rotifers (e.g., Brachionus, Keratella, Polyathra) were numerically dominant at both sites, while carbon biomass was highest in cladocerans. Zooplankton biomass was higher at the Kyungan Steam site compared to Paldang Dam site, and their high biomass during spring decreased as they were passing through the storm events in summer season at both sites. Zooplankton clearance rate (CR) was high in spring and autumn while low in summer at Paldang Dam site. However, zooplankton CR was high during the summer at Kyungan Stream site. Bacterial C-flux was high in spring and autumn when MACZ (esp. cladecerans) developed at a high biomass level at both sites. Overall, MACZ community CR and carbon flux (C-flux) were higher than those of MICZ, and the degree of difference between them was higher at Kyungan Stream site. Short hydraulic residence time and physical disturbance caused by summer storm event appeared to affect the zooplankton grazing on bacteria at both sites. The results of this study indicate that bacteria are potentially important carbon source of zooplankton, and that both biotic (e.g,, prey and predator taxa composition and abundance) and physical parameters appear to alter energy transfer in the planktonic food web of this river-reservoir hybrid system.

박테리아-동물플랑크톤의 영양적 관계와 이에 미치는 요인들을 파악하기 위하여 2005년 4월부터 12월까지 팔당호 생태계의 영양상태가 다른 팔당댐앞과 경안천 두 지점을 선정하여 동물플랑크톤의 여과율과 박테리아의 C-flux를 분석하였다. 동물플랑크톤은 소형 (Microzooplankton, MICZ: 60-200 ${\mu}m$)과 대형동물플랑크톤(Macrozooplankton, MACZ: >200 ${\mu}m$)으로 구분하여 각 그룹에 대하여 별도로 섭식률을 조사하였다. 두 지점에서 박테리아 밀도와 계절적 변화양상은 유사하게 나타났다. 동물플랑크톤은 두 지점 모두 윤충류(Brachionus, Keratella, Polyathra)가 수적으로 크게 우점하였으나, 탄소생물량은 지각류(Daphnia)가 가장 높았다. 동물플랑크톤은 봄에 높은 밀도와 탄소생물량을 보였고 여름철 집중강우 시기를 기점으로 크게 감소하였다. 지점별로는 경안천에서 상대적으로 높은 탄소생물량이 나타났다. 박테리아에 대한 동물플랑크톤 여과율은 팔당댐앞에서 봄, 가을철에 높고 여름철에 낮게 나타나는 계절에 따른 변화가 명확하게 나타난 반면, 경안천에서는 팔당댐앞과는 달리 여름철에 높게 나타났다. C-flux는 두 지점 모두 봄철과 가을철에 높게 나타났다. 군집여과율과 박테리아 C-flux는 MACZ가 MICZ보다 높았고, 그 정도는 경안천에서 더 높게 나타났다. 여름철의 집중강우로 인한 짧은 체류시간과 수체의 교란이 동물플랑크톤의 섭식에 영향을 미치는 것으로 파악되었다.

Keywords

References

  1. Agasild, H. and T. Noges. 2005. Cladoceran and rotifer grazing on bacteria and phytoplankton in two shallow eutrophic lakes: in situ measurement with fluorescent microspheres. J. Plankton Res. 27: 1155-1174 https://doi.org/10.1093/plankt/fbi080
  2. Andersen, A. and D.O. Hessen. 1991. Carbon, nitrogen, and phosphorus contents of freshwater zooplankton. Limnol. Oceanogr. 36: 807-814 https://doi.org/10.4319/lo.1991.36.4.0807
  3. Arndt, H. and R. Heerkloos. 1989. Diurnal variation in feeding and assimilation rates of planktonic rotufers and its possible ecological significance. Int. Rev. Ges. Hydrobiol. 74: 261-272 https://doi.org/10.1002/iroh.19890740304
  4. Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil and F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-263 https://doi.org/10.3354/meps010257
  5. Burkill, P.H., E.S. Edwards and M.A. Sleigh. 1995. Microzooplankton and their role in controlling phytoplankton growth in the marginal ice zone of the Bellingshausen Sea. Deep. Sea. Res. II. 42: 1277 -1290 https://doi.org/10.1016/0967-0645(95)00060-4
  6. Burns, C.W. and J.J. Gilbert. 1993. Predation on ciliates by freshwater calanoid copepods: rates of predation and relative vulnerabilities of prey. Freshwater Biol. 30: 377-393 https://doi.org/10.1111/j.1365-2427.1993.tb00822.x
  7. Burns, C.W. and M. Schallenberg. 1996. Relative impacts of copepods, cladocerans and nutrients on the microbial food web of a mesotrophic lake. J. Plankton Res. 18: 683-714 https://doi.org/10.1093/plankt/18.5.683
  8. Cha, C.W., D.M. Kim, K.P. Um, Y.H. Kim, Y.J. Lee, J.H. Moon, K.A. Sohn, S.J. Kim and S.T. Lee. 1977. An ecological survey and research to conserve the water resource of the Han River. Mainly related to the Paldang reservoir. J. Korea Water Works Ass. 11: 1-20
  9. Christoffersen, K., B. Riemann, L.R. Hansen, A. Klysner and H.B. Sorensen. 1990. Qualitative importance of the microbial loop and plankton community structure in a eutrophic lake during a bloom of cyanobacteria. Microb. Ecol. 20: 253-372 https://doi.org/10.1007/BF02543881
  10. Culver, D.A., M.M. Boucherle, D.J. Bean and J.W. Flethcer. 1985. Biomass of freshwater crustacean zooplankton from Length-Weight regressions. Can. J. Fish. Aquat. Sci. 42: 1380-1390 https://doi.org/10.1139/f85-173
  11. David, G.A., M. Alvarez-Cobelas, C. Rojo and S. Sánchez-Carrillo. 2000. The significance of water inputs to plankton biomass and trophic relationships in a semi-arid frewater wetland (central Spain). J. Plankton Res. 22: 2075-2093 https://doi.org/10.1093/plankt/22.11.2075
  12. Descy, J.-P. 1993. Ecology of the phytoplankton of the river Moselle-effects of disturbances on community structure and diversity. Hydrobiol. 249: 111-116 https://doi.org/10.1007/BF00008847
  13. Dickman, M. 1969. Someeffects of lake renewal on phytoplankton productivity and species composition. Limnol. Oceanogr. 14: 660-666 https://doi.org/10.4319/lo.1969.14.5.0660
  14. Downing, J.A. and F.H.R. Rigler. 1984. A manual on methods for the assessment of secondary productivity in freshwaters. Blackwell Scientific Publications, p. 247-249
  15. Fenchel, T. 1988. Marine plankton food webs. Ann. Rev. Ecol. Syst. 19: 19-38 https://doi.org/10.1146/annurev.es.19.110188.000315
  16. Forsyth, D.J. and M.R. James. 1984. Zooplankton grazing on lake bacterioplankton and phytoplankton. J. Plankton Res. 6: 803-810 https://doi.org/10.1093/plankt/6.5.803
  17. Gifford, D.J. 1991. The protozoan-metazoan trophic link in pelagic ecosystems. J. Protozool. 38: 81-86 https://doi.org/10.1111/j.1550-7408.1991.tb04806.x
  18. Hall, D.T., S.T. Threlkeld, C.W. Burns and P.H. Crowley. 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Annual Review of Ecology and Systematics 7: 177- 208 https://doi.org/10.1146/annurev.es.07.110176.001141
  19. Havens, K.E. 1994. The importance of rotiferan and crustacean zooplankton as grazers of algal productivity in a freshwater estuary. Arch. Hydrobiol. 122: 1-22
  20. Heath, R.T., S.J. Hwang and M. Munawar. 2003. A hypothesis for the assessment of the importance of microbial food web: Linkages in nearshore and offshore habitats of the Laurentian Great Lakes. Aquatic Ecosystem Health & Management 6(3): 231-239 https://doi.org/10.1080/14634980301495
  21. Hwang, S.J. 2006. Trophic dynamics and energy transfer in aquatic food web. Han River Environmental Research Laboratory, National Institute of Environmental Research
  22. Hwang, S.J. 1995. Carbon dynamics of plankton communities in nearshore and offshore Lake Erie: The significance of the microbial loop for higher trophic levels. PhD Dissertation, Kent State University, Kent, OHIO, USA
  23. Hwang, S-J. 1997. Impact of eutrophication on the mocrobial food web dynamics in Lake Erie Ecosystem. Korean J. Limnol. 30: 496-505
  24. Hwang, S.J. and R.T. Heath. 1999. Zooplankton bacterivory at coastal and offshore sites of Lake Erie. J. Plankton Res. 21: 699-719 https://doi.org/10.1093/plankt/21.4.699
  25. Hwang, S.-J. and R.T. Heath. 1997a. Bacterial productivity and protozoan bacterivory in coastal and offshore communities of Lake Erie. Can. J. Fish. Aquat. Sci. 54: 788-799 https://doi.org/10.1139/cjfas-54-4-788
  26. Hwang, S.-J. and R.T. Heath. 1997b. The distribution of protozoa across a trophic gradient, factors controlling their abundance and importance in the plankton food web. J. Plankton Res. 18: 1605- 1625 https://doi.org/10.1093/plankt/18.9.1605
  27. Jeppesen, E., M. Sondergaard, J.P. Jensen, E. Mortensen and O. Sortkjær. 1996. Fish-induced change in zoplankton grazing on phytoplankton and bacterioplankton: a long-term study in shallow hypertrophic Lake Sobygaard. J. Plankton Res. 18: 1605-1625 https://doi.org/10.1093/plankt/18.9.1605
  28. Kerfoot, W.C. and A. Sih. 1987. Predation-Direct and indirect impacts on aquatic communities. University Press of New England. Hanover and London, 386p
  29. Kim, H.W., K. Ha and G.J. Joo. 1998. Eutrophication of the lower Nakdong River after the construction of an estuarine dam in 1987. Internat. Rev. Hydrobiol. 83: 65-72 https://doi.org/10.1002/iroh.19980830107
  30. Kim, H.W., K.H. Chang, K.S. Jeong and G.J. Joo. 2003. The spring metazooplankton dynamics in the river-reservoir hybrid system (Nakdong River, Korea): Its role in controlling the phytoplankton biomass. Korean J. Limnol. 36: 420-426
  31. Kim, H.W., S.J. Hwang and G.J. Joo. 2000. Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). J. Plankton Res. 22: 1559-1577 https://doi.org/10.1093/plankt/22.8.1559
  32. Kim, H.W., S.J. Hwang, K.H. Kim, M.H. Jang, G.J. Joo and N. Walz. 2002. Longitudinal difference in zooplankton grazing on phyto- and bacterioplankton in the Nakdong River (Korea). Hydrobiol. 87: 281-293
  33. Knoechel, R. and B. Holtby. 1986. Construction and validation of a body-length based model for the prediction of cladoceran community filtering rates. Limnol. Oceanogr. 31: 1-16 https://doi.org/10.4319/lo.1986.31.1.0001
  34. Kong, D.S. 1997. Limnological and ecological characteristic of a river-reservoir (Palgang), Korea. Korean J. Limnol. 30(supplement): 524-535
  35. Lair, N. and H.O. Ali. 1990. Grazing and assimilation rates of natural populations of planktonic rotifers Keratella cochlearis, Keratella quadrata and Kellicottia longispina in a eutrophic lake (Aydat, France). Hydrobiol. 194: 119-131 https://doi.org/10.1007/BF00028413
  36. Laws, E.A., D.G. Redalje, L.W. Haas, P.K. Beinfang and R.W. Eppley. 1984. High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters. Limnol. Oceanogr. 29: 1161-1169 https://doi.org/10.4319/lo.1984.29.6.1161
  37. Lees, J.J. and J.A. Fuhrman. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53: 1298-1303
  38. Lehman, J.T. and C.D. Sandgren. 1985. Species-specific rates of growth and grazing loss among freshwater algae. Limnol Oceanogr. 30: 34-46 https://doi.org/10.4319/lo.1985.30.1.0034
  39. Lempert, W. 1987. 'Feeding and Nutrition in Daphnia', in R.H. Peters and R. de Bernardi (eds), Daphnia, Mem. Ist. Ital. Idrobiol. 45: 143-192
  40. Margalef, R. 1997. Our Biosphere. Excellence in Ecology 10. Ecology Institute, Oldenburg/Luhe, Germany
  41. Moralities, S. and G. Lacroix. 1990. In situ filtering rates of cladocera: Effects of body length, temperature and food concentration. Limnol. Oceanogr. 35: 1101-1111 https://doi.org/10.4319/lo.1990.35.5.1101
  42. Muylaert, K., J.V. Wichelen, K. Sabbe and W. Vyverman. 2001. Short-term phytoplankton dynamics in a freshwater tidal estuary. Hydrobiol. 150: 269- 288
  43. Nagata, T. 1988. The microflagellate-picoplankton food linkage in the water column of Lake Biwa. Limnol. Oceanogr. 33: 504-517 https://doi.org/10.4319/lo.1988.33.4.0504
  44. Pace, M.L. and J.D. Orcutt. 1981. The relative importance of protozoans, rotifers and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 26: 822-830 https://doi.org/10.4319/lo.1981.26.5.0822
  45. Pace, M.L., G.B. McManus and S.E.G. Findlay. 1990. Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol. Oceanogr. 35: 795-808 https://doi.org/10.4319/lo.1990.35.4.0795
  46. Pedros-Alio, C. and T.D. Brock. 1983. The impact of zooplankton feeding on the epilimnetic bacteria of a eutrophic lake. Freshwater Biol. 13: 227-239 https://doi.org/10.1111/j.1365-2427.1983.tb00673.x
  47. Polis, G.A. and K.O. Winemiller. 1996. Food webs- Integration of patterns and dynamics. Chapman & Hall, New York, 472p
  48. Poter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948 https://doi.org/10.4319/lo.1980.25.5.0943
  49. Poter, K.G., C.H. Chair, R.R. Hodson, M. Pace, J. Priscu, B. Riemann, D. Scavia and J. Stockner. 1988. Microbial interactions in lake food webs. In Carpenter, S.R. (Ed.) Complex interactions in lake communities. p. 209-227. Springer-Verlag
  50. Quintana, X.D., F.A. Comín and R. Moreno-Amich. 1998. Nutrient and plankton dynamics in a Mediterranean salt marsh dominated by incidents of flooding. Part 2: Response of a zooplankton community to disturbances. J. Plankton Res. 20: 2109 -2127 https://doi.org/10.1093/plankt/20.11.2109
  51. Riemann, B. and M. Sondergaard. 1986. Regulation of bacterial secondary production in two eutrophic lakes and in experimental enclosures. J. Plankton Res. 8: 519-536 https://doi.org/10.1093/plankt/8.3.519
  52. Shin, J.K., S.A. Jeong, I.W. Choi and S.J. Hwang. 2004. Dynamics of turbid water in a Korean Reservoir with selective withdrawal discharges. Korean J. Limnol. 37: 423-430
  53. Simon, M. and F. Azam. 1989. Protein content and protein sunthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201-213 https://doi.org/10.3354/meps051201
  54. Stoecker, D.K. and J.M. Capuzzo. 1990. Predation on protozoa: Its importance to zooplankton. J. Plankton Res. 12: 891-908 https://doi.org/10.1093/plankt/12.5.891
  55. Uhm, S.H. and S.J. Hwang. 2006. Grazing relationship between phytoplankton and zooplankton in Lake Paldang ecosystem. Korean J. Limnol. 39: 390-401
  56. Vaque, D. and M. Pace, S. Findlay. 1992. Fate of bacterial production in a heterotrophic ecosystem: grazing by protists and metazoans in the Hudson Estuary. Mar. Ecol. Prog. Ser. 89: 155-163 https://doi.org/10.3354/meps089155
  57. Wiesse, T., M. Muller and R.M. Pinto-Ceolho. 1990. Response of the microbial loop to the phytoplankton bloom in a large prealpine lake. Limnol. Oceanogr. 35: 781-794 https://doi.org/10.4319/lo.1990.35.4.0781
  58. Wylie, J.L. and D.J. Currie. 1991. The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol. Oceanogr. 36: 708-728 https://doi.org/10.4319/lo.1991.36.4.0708