• 제목/요약/키워드: zero divisors

검색결과 38건 처리시간 0.024초

CHARACTERIZING ALMOST PERFECT RINGS BY COVERS AND ENVELOPES

  • Fuchs, Laszlo
    • 대한수학회지
    • /
    • 제57권1호
    • /
    • pp.131-144
    • /
    • 2020
  • Characterizations of almost perfect domains by certain covers and envelopes, due to Bazzoni-Salce [7] and Bazzoni [4], are generalized to almost perfect commutative rings (with zero-divisors). These rings were introduced recently by Fuchs-Salce [14], showing that the new rings share numerous properties of the domain case. In this note, it is proved that admitting strongly flat covers characterizes the almost perfect rings within the class of commutative rings (Theorem 3.7). Also, the existence of projective dimension 1 covers characterizes the same class of rings within the class of commutative rings admitting the cotorsion pair (𝒫1, 𝒟) (Theorem 4.1). Similar characterization is proved concerning the existence of divisible envelopes for h-local rings in the same class (Theorem 5.3). In addition, Bazzoni's characterization via direct sums of weak-injective modules [4] is extended to all commutative rings (Theorem 6.4). Several ideas of the proofs known for integral domains are adapted to rings with zero-divisors.

RINGS IN WHICH EVERY IDEAL CONTAINED IN THE SET OF ZERO-DIVISORS IS A D-IDEAL

  • Anebri, Adam;Mahdou, Najib;Mimouni, Abdeslam
    • 대한수학회논문집
    • /
    • 제37권1호
    • /
    • pp.45-56
    • /
    • 2022
  • In this paper, we introduce and study the class of rings in which every ideal consisting entirely of zero divisors is a d-ideal, considered as a generalization of strongly duo rings. Some results including the characterization of AA-rings are given in the first section. Further, we examine the stability of these rings in localization and study the possible transfer to direct product and trivial ring extension. In addition, we define the class of dE-ideals which allows us to characterize von Neumann regular rings.

THE INDEPENDENCE AND INDEPENDENT DOMINATING NUMBERS OF THE TOTAL GRAPH OF A FINITE COMMUTATIVE RING

  • Abughazaleh, Baha';Abughneim, Omar AbedRabbu
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.969-975
    • /
    • 2022
  • Let R be a finite commutative ring with nonzero unity and let Z(R) be the zero divisors of R. The total graph of R is the graph whose vertices are the elements of R and two distinct vertices x, y ∈ R are adjacent if x + y ∈ Z(R). The total graph of a ring R is denoted by 𝜏(R). The independence number of the graph 𝜏(R) was found in [11]. In this paper, we again find the independence number of 𝜏(R) but in a different way. Also, we find the independent dominating number of 𝜏(R). Finally, we examine when the graph 𝜏(R) is well-covered.

A NOTE ON ZERO DIVISORS IN w-NOETHERIAN-LIKE RINGS

  • Kim, Hwankoo;Kwon, Tae In;Rhee, Min Surp
    • 대한수학회보
    • /
    • 제51권6호
    • /
    • pp.1851-1861
    • /
    • 2014
  • We introduce the concept of w-zero-divisor (w-ZD) rings and study its related rings. In particular it is shown that an integral domain R is an SM domain if and only if R is a w-locally Noetherian w-ZD ring and that a commutative ring R is w-Noetherian if and only if the polynomial ring in one indeterminate R[X] is a w-ZD ring. Finally we characterize universally zero divisor rings in terms of w-ZD modules.

ANNIHILATOR GRAPHS OF COMMUTATOR POSETS

  • Varmazyar, Rezvan
    • 호남수학학술지
    • /
    • 제40권1호
    • /
    • pp.75-82
    • /
    • 2018
  • Let P be a commutator poset with Z(P) its set of zero-divisors. The annihilator graph of P, denoted by AG(P), is the (undirected) graph with all elements of $Z(P){\setminus}\{0\}$ as vertices, and distinct vertices x, y are adjacent if and only if $ann(xy)\;{\neq}\;(x)\;{\cup}\;ann(y)$. In this paper, we study basic properties of AG(P).

On SF-Rings and Semisimple Rings

  • Lee, Kyoung Hee
    • 충청수학회지
    • /
    • 제7권1호
    • /
    • pp.53-58
    • /
    • 1994
  • In this note, we study conditions under which SF-rings are semi-simple. We prove that left SF-rings are semisimple for each of the following classes of rings: (1) left non-singular rings of finite rank; (2) rings whose maximal left ideals are finitely generated; (3) rings of pure global dimension zero and (4) rings which is pure-split. Also it is shown that left SF-rings without zero-divisors are semisimple.

  • PDF

GLIFT CODES OVER CHAIN RING AND NON-CHAIN RING Re,s

  • Elif Segah, Oztas
    • 대한수학회보
    • /
    • 제59권6호
    • /
    • pp.1557-1565
    • /
    • 2022
  • In this paper, Glift codes, generalized lifted polynomials, matrices are introduced. The advantage of Glift code is "distance preserving" over the ring R. Then optimal codes can be obtained over the rings by using Glift codes and lifted polynomials. Zero divisors are classified to satisfy "distance preserving" for codes over non-chain rings. Moreover, Glift codes apply on MDS codes and MDS codes are obtained over the ring 𝓡 and the non-chain ring 𝓡e,s.