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Abstract. Let R be a finite commutative ring with nonzero unity and
let Z(R) be the zero divisors of R. The total graph of R is the graph

whose vertices are the elements of R and two distinct vertices x, y ∈ R
are adjacent if x + y ∈ Z(R). The total graph of a ring R is denoted by
τ(R). The independence number of the graph τ(R) was found in [11].

In this paper, we again find the independence number of τ(R) but in a
different way. Also, we find the independent dominating number of τ(R).

Finally, we examine when the graph τ(R) is well-covered.

1. Introduction

Let R be a commutative ring with nonzero unity and Z(R) be the set of
zero divisors of R. The total graph, denoted by τ(R), was first introduced
and studied in [4]. The vertices of the graph τ(R) are the elements of R and
two distinct vertices x, y ∈ R are adjacent in the graph τ(R) if and only if
x + y ∈ Z(R). Without assuming R is finite, Anderson and Badawi studied
in [4] some of the properties of the graph τ(R) such as the diameter and the
girth. Akbari et al. [2] showed that if R is finite and τ(R) is connected, then
τ(R) is Hamiltonian. Maimani et al. [9] determined all isomorphism classes of
finite rings whose total graph has genus at most one (i.e., a planar or toroidal
graph). In addition, they have shown that, given a positive integer g, there are
only finitely many finite rings whose total graph has genus g. For finite rings,
Shekarriz et al. [14] determined when the graph τ(R) is Eulerian. Also, they
computed the domination number of the graph τ(R). Variations of the total
graph of commutative rings were introduced and studied, for more details see
[1, 5, 6].

Let G be a graph. A set of vertices of G is called an independent set if no
two vertices in the set are adjacent, i.e., the induced subgraph on this set of
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vertices is the null graph. The independence number of G, denoted by α(G),
is the maximum cardinality of an independent set in G. A dominating set of
G is a set D of vertices of G such that every vertex in G that is not in D is
adjacent to a vertex in D. The domination number of a graph G, denoted by
γ(G), is the minimum cardinality of a dominating set in G. An independent
dominating set of G is a set that is both dominating and independent in G.
The independent dominating number of a graph G, denoted by i(G), is the
minimum cardinality of an independent dominating set in G. It can be easily
checked that an independent dominating set of G is a maximal independent
set in G and conversely. It is clear that γ(G) ≤ i(G) ≤ α(G). More details
on the independence number, the domination number and the independent
dominating number of a graph can be found in [3, 8, 15]. A graph G is called
well-covered if all maximal independent sets in G have the same cardinality.
Well-covered graphs were defined and first studied by Plummer, see [12]. More
details on well-covered graphs can be found in [13]. Mishra and Patra computed
the independence number of the graph τ(Zn) in [10], Dhorajia computed the
independence number of the graph τ(Zn × Zm) in [7] and Nazzal found the
independence number of the graph τ(R) where R is a finite commutative ring
in [11].

We assume through this paper that all rings are finite commutative with
nonzero unity. Let R be a ring. In this paper, we again find the indepen-
dence number of τ(R) but in a different way. Also, we find the independent
dominating number of τ(R). Finally, we investigate when the graph τ(R) is
well-covered.

2. Independence and independent domination numbers of the
graph τ (R) and when τ (R) is well-covered

Let R be a ring. Firstly, we determine the independence and independent
domination numbers of the graph τ(R) when R is a local ring. If R is a local
ring, then Z(R) is the unique maximal ideal of R.

The following characterization of τ(R) was given in [4].

Theorem 2.1. Let R be a local ring where |Z(R)| = n and |R/Z(R)| = β.
Then

(1) If 2 ∈ Z(R), then τ(R) is the union of β disjoint Kn’s. The induced
subgraph on Z(R) is Kn.

(2) If 2 /∈ Z(R), then τ(R) is the disjoint union of one copy of Kn and β−1
2

copies of Kn,n. The induced subgraph on Z(R) is Kn.

Nazzal in [11] found the independence number of a local ring in the following
theorem.

Theorem 2.2. Let R be a local ring where |Z(R)| = n and |R/Z(R)| = β.
Then

(1) If 2 ∈ Z(R), then α(τ(R)) = β.
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(2) If 2 /∈ Z(R), then α(τ(R)) = n(β−12 ) + 1.

In the following theorem, we find i(τ(R)), where R is a local ring. Also, we
get that τ(R) is well-covered, when R is a local ring.

Theorem 2.3. Let R be a local ring where |Z(R)| = n and |R/Z(R)| = β.
Then τ(R) is well-covered and

(1) If 2 ∈ Z(R), then i(τ(R)) = α(τ(R)) = β.

(2) If 2 /∈ Z(R), then i(τ(R)) = α(τ(R)) = n(β−12 ) + 1.

Proof. If 2 ∈ Z(R), then according to Theorem 2.1 τ(R) is the disjoint union
of β copies of Kn. Hence any maximal independent set must contain exactly
one vertex from each copy. Therefore

i(τ(R)) = α(τ(R)) = β.

Also, it is clear that τ(R) is well-covered.
If 2 /∈ Z(R), then according to Theorem 2.1 τ(R) is the disjoint union of one

copy of Kn and β−1
2 copies of Kn,n. Hence any maximal independent set must

contain exactly one vertex from Kn and exactly n vertices from each Kn,n. So

i(τ(R)) = α(τ(R)) = n

(
β − 1

2

)
+ 1.

Also, it is clear that τ(R) is well-covered. �

We need some facts from ring theory. An Artinian ring R is either a local
ring or a finite direct product of local rings, i.e., R = R1×R2×· · ·×Rk where
each one of the Ri’s is a local ring. Since a finite ring is artinian, then R is
local or R is a finite direct product of local rings. We have found α(τ(R)) and
i(τ(R)) for local rings in Theorem 2.3.

In the rest of the paper, we assume that any ring is of the form R = R1 ×
R2 × · · · × Rk, where Ri is a finite local ring for all i = 1, 2, . . . , k. Since
R is finite, then any element of R is a unit or a zero divisor. An element
(x1, x2, . . . , xk) ∈ R is a unit if and only if xi ∈ R∗i for all i = 1, 2, . . . , k. Thus
(x1, x2, . . . , xk) ∈ Z (R) if and only if xi ∈ Z(Ri) for some i = 1, 2, . . . , k.

We need the following two lemmas. The proof of the first one is easy and
we will skip it.

Lemma 2.4. Let R = R1 × R2 × · · · × Rk be a finite ring. Then x =
(x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) are adjacent in τ(R) if and only if
one of the following conditions holds:

(1) xi and yi are adjacent in τ(Ri) for some i = 1, 2, . . . , k.
(2) xi = yi and xi ∈ Z(Ri) for some i = 1, 2, . . . , k.
(3) xi = yi and 2 ∈ Z(Ri) for some i = 1, 2, . . . , k.

Lemma 2.5. Let R = R1 × R2 × · · · × Rk be a finite ring and let S be
any maximal independent set in τ(R). Then there exist S1, S2, . . . , Sk that are
maximal independent sets in τ(R1), τ(R2), . . . , τ(Rk), respectively, such that
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S ⊂ S1 × S2 × · · · × Sk. Moreover, if 2 /∈ Z(Ri) for all i = 1, 2, . . . , k, then
S∗ = S∗1 × S∗2 × · · · × S∗k .

Proof. Let Mi be the set of all ith coordinates of S for all i = 1, 2, . . . , k.
According to Lemma 2.4 the set Mi is an independent set in τ(Ri) for all
i = 1, 2, . . . , k. Let Si be a maximal independent set in τ(Ri) such that Mi ⊂ Si
for all i = 1, 2, . . . , k. Therefore, S ⊂ S1 × S2 × · · · × Sk. If 2 /∈ Z(Ri) for all
i = 1, 2, . . . , k, let x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ S∗1 ×S∗2 ×· · ·×S∗k .
Since each one of the S∗i ’s is an independent set, then x+y is a unit in R. Thus x
and y are not adjacent in τ(R) and hence S∗1 ×S∗2 × · · ·×S∗k is an independent
set in τ(R). Let w = (w1, w2, . . . , wk) ∈ Z(S) and y = (y1, y2, . . . , yk) ∈
S∗1 ×S∗2 × · · ·×S∗k . Then wi, yi ∈ Si for all i = 1, 2, . . . , k. So wi and yi are not
adjacent in τ(Ri) for all i = 1, 2, . . . , k and yi is a unit for all i = 1, 2, . . . , k.
Thus according to Lemma 2.4 w and y are not adjacent in τ(R) and hence
(S∗1 × S∗2 × · · · × S∗k) ∪Z(S) is an independent set in τ(R) containing S. Since
S is a maximal independent set in τ(R), then S = (S∗1 ×S∗2 × · · ·×S∗k)∪Z(S).
Therefore S∗ = S∗1 × S∗2 × · · · × S∗k . �

Theorem 2.6. Let R = R1×R2× · · ·×Rk be a finite ring with 2 /∈ Z(Ri) for
all i = 1, 2, . . . , k. Then

α(τ(R)) =

k∏
i=1

(α(τ(Ri))− 1) + k and i(τ(R)) =

k∏
i=1

(α(τ(Ri))− 1) + 1.

Moreover τ(R) is not well-covered for all k ≥ 2.

Proof. Let S be any maximal independent set in τ(R). Then according to
Lemma 2.5 there exist S1, S2, . . . , Sk that are maximal independent sets in
τ(R1), τ(R2), . . . , τ(Rk), respectively, such that S ⊂ S1 × S2 × · · · × Sk. Ac-
cording to Theorem 2.1 Si contains exactly one zero divisor from Ri for all
i = 1, 2, . . . , k. Also, using Lemma 2.5

|S∗| =
k∏
i=1

|S∗i | =
k∏
i=1

(α(τ(Ri))− 1).

Let u = (u1, u2, . . . , uk) and v = (v1, v2, . . . , vk) ∈ Z(S). Since S is an in-
dependent set in τ(R), then ui /∈ Z(Ri) or vi /∈ Z(Ri) for all i = 1, 2, . . . , k.
Thus S has at most k zero divisors in R. Indeed S must contain at least one
zero divisor in R to show that let wi be the zero divisor of Si in Ri for all
i = 1, 2, . . . , k. Then (w1, w2, . . . , wk) is not adjacent to x = (x1, x2, . . . , xk) in
τ(R) for all x ∈ S∗. Therefore

k∏
i=1

(α(τ(Ri))− 1) + 1 ≤ |S| ≤
k∏
i=1

(α(τ(Ri))− 1) + k.
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To show that α(τ(R)) =
k∏
i=1

(α(τ(Ri)) − 1) + k, let (x1, x2, . . . , xk) ∈ S∗1 ×

S∗2 × · · ·×S∗k and S′ = {(w1, x2, . . . , xk), (x1, w2, . . . , xk), . . . , (x1, x2, . . . , wk)}.
Then S′ is an independent set in τ(R) with k zero divisors in R. Take Sα =
(S∗1 × S∗2 × · · · × S∗k)∪ S′. Observe that Sα is an independent set in τ(R) with

|Sα| =
k∏
i=1

(α(τ(Ri))− 1) + k. Hence Sα is a maximum independent set in τ(R)

with

α(τ(R)) = |Sα| =
k∏
i=1

(α(τ(Ri))− 1) + k.

To show that i(τ(R)) =
k∏
i=1

(α(τ(Ri)) − 1) + 1, take Sβ = (S∗1 × S∗2 × · · · ×

S∗k) ∪ {(w1, w2, . . . , wk)} and let x = (x1, x2, . . . , xk) /∈ Sβ . If xi ∈ Z(Ri) for
some i = 1, 2, . . . , k, then xi and wi are adjacent in τ(Ri) and hence x and w
are adjacent in τ(R) and if xi ∈ R∗i for all i = 1, 2, . . . , k, then x is a unit and
x = (x1, x2, . . . , xk) /∈ S∗1 × S∗2 × · · · × S∗k . So xi /∈ Si for some i = 1, 2, . . . , k.
But, since Si is a maximal independent set in τ(Ri), then xi is adjacent to yi
in τ(Ri) for some yi ∈ Si. Hence x must be adjacent to y in τ(R) for some
y ∈ S∗β such that yi is the ith component of y. Thus Sβ is a smallest maximal

independent set in τ(R) and hence Sβ is a smallest independent dominating
set in τ(R). So

i(τ(R)) = |Sβ | =
k∏
i=1

(α(τ(Ri))− 1) + 1.

Thus τ(R) is not well-covered for all k ≥ 2. �

Example 2.7. Let R = Z45. Then R = Z9 × Z5, 2 /∈ Z(Z9) and 2 /∈ Z(Z5)
with |Z(Z9)| = 3 and |Z(Z5)| = 1. So |Z9/Z(Z9)| = 3 and |Z5/Z(Z5)| = 5. By
Theorem 2.3 α(τ(Z9)) = 4 and α(τ(Z5)) = 3. Thus by Theorem 2.6

α(τ(R)) = (4− 1)(3− 1) + 2 = 8 and i(τ(R)) = (4− 1)(3− 1) + 1 = 7.

Consider S1 = {0, 1, 4, 7} and S2 = {0, 1, 2}. Then S1 and S2 are maximal
independent sets in τ(Z9) and τ(Z5), respectively, and

S∗1 × S∗2 = {(1, 1) , (1, 2) , (4, 1) , (4, 2) , (7, 1) , (7, 2)} .

Take Sα = (S∗1 × S∗2 ) ∪ {(0, 1) , (1, 0)} and Sβ = (S∗1 × S∗2 ) ∪ {(0, 0)}. Then
(according to the proof of Theorem 2.6) Sα is a maximum independent set
in τ(R) and Sβ is a smallest independent dominating set in τ(R) and with
|Sα| = 8 and |Sβ | = 7.

Theorem 2.8. Let R = R1 × · · · × Rk × R′1 × · · · × R′m be a finite ring with
2 ∈ Z(Ri) for all i = 1, 2, . . . , k and 2 /∈ Z(R′j) for all j = 1, 2, . . . ,m. Then
i(τ(R)) = α(τ(R)) = min{α(τ(Ri)) : i = 1, 2, . . . , k}. Moreover, τ(R) is well-
covered.
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Proof. Without loss of generality we will assume that

α(τ(R1)) = min{α(τ(Ri)) : i = 1, 2, . . . , k} = n.

Let S be any maximal independent set in τ(R). According to Lemma 2.5
S ⊂ S1 × · · · × Sk × S′1 × · · · × S′m, where S1, . . . , Sk, S

′
1, . . . , S

′
m are maxi-

mal independent sets in τ(R1), . . . , τ(Rk), τ(R′1), . . . , τ(R′m), respectively. Let
x = (x1, . . . , xk, x

′
1, . . . , x

′
m) and y = (y1, . . . , yk, y

′
1, . . . , y

′
m) ∈ S. Since S

is an independent set in τ(R), then x = (x1, . . . , xk, x
′
1, . . . , x

′
m) and y =

(y1, . . . , yk, y
′
1, . . . , y

′
m) are not adjacent in τ(R). Therefore x1 6= y1. Because

if x1 = y1, then x1 + y1 = 2x1 ∈ Z(R1) and so x + y ∈ Z(R) which is a con-
tradiction. Thus |S| ≤ |S1| = n. Suppose |S| < n ≤ |Si| for all i = 1, 2, . . . , k.
Thus there exists ui ∈ Si such that ui does not belong to the set of all ith co-
ordinates of S for all i = 1, 2, . . . , k. Take u = (u1, . . . , uk, u

′
1, . . . , u

′
m), where

u′j is a unit in S′j for all j = 1, 2, . . . ,m. Then u /∈ S and u is not adjacent to
x = (x1, . . . , xk, x

′
1, . . . , x

′
m) for all x ∈ S. Thus S ∪ {u} is an independent set

in τ(R) which is a contradiction. Thus |S| = n. Thus all maximal independent
sets have the same cardinality and we get i(τ(R)) = α(τ(R)) = min{α(τ(Ri)) :
i = 1, 2, . . . , k}. Therefore τ(R) is well-covered. �

Corollary 2.9. A finite ring R is well-covered if and only if R is a local ring
or R = R1 ×R2 × · · · ×Rk is a ring with 2 ∈ Z(Ri) for some i = 1, 2, . . . , k.

Example 2.10. Let R = Z8 × R2 × Z3, where R2 = Z2 [x] /
(
x2 + 1

)
=

{0, 1, x, 1 + x}. Then 2 ∈ Z(Z8), 2 ∈ Z(R2) and 2 /∈ Z(Z3) with |Z(Z8)| = 4,
|Z(R2)| = 1 and |Z(Z3)| = 1. So |Z8/Z(Z8)| = 2, |R2/Z(R2)| = 4 and
|Z3/Z(Z3)| = 3. By Theorem 2.3, α(τ(Z8)) = 2, α(τ(R2)) = 4 and α(τ(Z3)) =
2. Using Theorem 2.8, we get

α(τ(R)) = min {α(τ(Z8)), α(τ(R2))} = 2.

Consider S1 = {0, 1}. Then S1 is a maximal independent set in τ(Z8). Take
S = {(0, 0, 1) , (1, 1, 1)}. Then (according to the proof of Theorem 2.8) S is a
maximal independent set in τ(R) with |S| = 2.
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