THE INDEPENDENCE AND INDEPENDENT DOMINATING nUMBERS OF THE TOTAL GRAPH OF A FINITE COMMUTATIVE RING

Baha' Abughazaleh and Omar AbedRabbu Abughneim

Abstract

Let R be a finite commutative ring with nonzero unity and let $Z(R)$ be the zero divisors of R. The total graph of R is the graph whose vertices are the elements of R and two distinct vertices $x, y \in R$ are adjacent if $x+y \in Z(R)$. The total graph of a ring R is denoted by $\tau(R)$. The independence number of the graph $\tau(R)$ was found in [11]. In this paper, we again find the independence number of $\tau(R)$ but in a different way. Also, we find the independent dominating number of $\tau(R)$. Finally, we examine when the graph $\tau(R)$ is well-covered.

1. Introduction

Let R be a commutative ring with nonzero unity and $Z(R)$ be the set of zero divisors of R. The total graph, denoted by $\tau(R)$, was first introduced and studied in [4]. The vertices of the graph $\tau(R)$ are the elements of R and two distinct vertices $x, y \in R$ are adjacent in the graph $\tau(R)$ if and only if $x+y \in Z(R)$. Without assuming R is finite, Anderson and Badawi studied in [4] some of the properties of the graph $\tau(R)$ such as the diameter and the girth. Akbari et al. [2] showed that if R is finite and $\tau(R)$ is connected, then $\tau(R)$ is Hamiltonian. Maimani et al. [9] determined all isomorphism classes of finite rings whose total graph has genus at most one (i.e., a planar or toroidal graph). In addition, they have shown that, given a positive integer g, there are only finitely many finite rings whose total graph has genus g. For finite rings, Shekarriz et al. [14] determined when the graph $\tau(R)$ is Eulerian. Also, they computed the domination number of the graph $\tau(R)$. Variations of the total graph of commutative rings were introduced and studied, for more details see $[1,5,6]$.

Let G be a graph. A set of vertices of G is called an independent set if no two vertices in the set are adjacent, i.e., the induced subgraph on this set of

[^0]vertices is the null graph. The independence number of G, denoted by $\alpha(G)$, is the maximum cardinality of an independent set in G. A dominating set of G is a set D of vertices of G such that every vertex in G that is not in D is adjacent to a vertex in D. The domination number of a graph G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set in G. An independent dominating set of G is a set that is both dominating and independent in G. The independent dominating number of a graph G, denoted by $i(G)$, is the minimum cardinality of an independent dominating set in G. It can be easily checked that an independent dominating set of G is a maximal independent set in G and conversely. It is clear that $\gamma(G) \leq i(G) \leq \alpha(G)$. More details on the independence number, the domination number and the independent dominating number of a graph can be found in $[3,8,15]$. A graph G is called well-covered if all maximal independent sets in G have the same cardinality. Well-covered graphs were defined and first studied by Plummer, see [12]. More details on well-covered graphs can be found in [13]. Mishra and Patra computed the independence number of the graph $\tau\left(\mathbb{Z}_{n}\right)$ in [10], Dhorajia computed the independence number of the graph $\tau\left(\mathbb{Z}_{n} \times \mathbb{Z}_{m}\right)$ in [7] and Nazzal found the independence number of the graph $\tau(R)$ where R is a finite commutative ring in [11].

We assume through this paper that all rings are finite commutative with nonzero unity. Let R be a ring. In this paper, we again find the independence number of $\tau(R)$ but in a different way. Also, we find the independent dominating number of $\tau(R)$. Finally, we investigate when the graph $\tau(R)$ is well-covered.

2. Independence and independent domination numbers of the graph $\tau(R)$ and when $\tau(R)$ is well-covered

Let R be a ring. Firstly, we determine the independence and independent domination numbers of the graph $\tau(R)$ when R is a local ring. If R is a local ring, then $Z(R)$ is the unique maximal ideal of R.

The following characterization of $\tau(R)$ was given in [4].
Theorem 2.1. Let R be a local ring where $|Z(R)|=n$ and $|R / Z(R)|=\beta$. Then
(1) If $2 \in Z(R)$, then $\tau(R)$ is the union of β disjoint K_{n} 's. The induced subgraph on $Z(R)$ is K_{n}.
(2) If $2 \notin Z(R)$, then $\tau(R)$ is the disjoint union of one copy of K_{n} and $\frac{\beta-1}{2}$ copies of $K_{n, n}$. The induced subgraph on $Z(R)$ is K_{n}.

Nazzal in [11] found the independence number of a local ring in the following theorem.

Theorem 2.2. Let R be a local ring where $|Z(R)|=n$ and $|R / Z(R)|=\beta$. Then
(1) If $2 \in Z(R)$, then $\alpha(\tau(R))=\beta$.
(2) If $2 \notin Z(R)$, then $\alpha(\tau(R))=n\left(\frac{\beta-1}{2}\right)+1$.

In the following theorem, we find $i(\tau(R))$, where R is a local ring. Also, we get that $\tau(R)$ is well-covered, when R is a local ring.
Theorem 2.3. Let R be a local ring where $|Z(R)|=n$ and $|R / Z(R)|=\beta$. Then $\tau(R)$ is well-covered and
(1) If $2 \in Z(R)$, then $i(\tau(R))=\alpha(\tau(R))=\beta$.
(2) If $2 \notin Z(R)$, then $i(\tau(R))=\alpha(\tau(R))=n\left(\frac{\beta-1}{2}\right)+1$.

Proof. If $2 \in Z(R)$, then according to Theorem $2.1 \tau(R)$ is the disjoint union of β copies of K_{n}. Hence any maximal independent set must contain exactly one vertex from each copy. Therefore

$$
i(\tau(R))=\alpha(\tau(R))=\beta
$$

Also, it is clear that $\tau(R)$ is well-covered.
If $2 \notin Z(R)$, then according to Theorem $2.1 \tau(R)$ is the disjoint union of one copy of K_{n} and $\frac{\beta-1}{2}$ copies of $K_{n, n}$. Hence any maximal independent set must contain exactly one vertex from K_{n} and exactly n vertices from each $K_{n, n}$. So

$$
i(\tau(R))=\alpha(\tau(R))=n\left(\frac{\beta-1}{2}\right)+1
$$

Also, it is clear that $\tau(R)$ is well-covered.
We need some facts from ring theory. An Artinian ring R is either a local ring or a finite direct product of local rings, i.e., $R=R_{1} \times R_{2} \times \cdots \times R_{k}$ where each one of the R_{i} 's is a local ring. Since a finite ring is artinian, then R is local or R is a finite direct product of local rings. We have found $\alpha(\tau(R))$ and $i(\tau(R))$ for local rings in Theorem 2.3.

In the rest of the paper, we assume that any ring is of the form $R=R_{1} \times$ $R_{2} \times \cdots \times R_{k}$, where R_{i} is a finite local ring for all $i=1,2, \ldots, k$. Since R is finite, then any element of R is a unit or a zero divisor. An element $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in R$ is a unit if and only if $x_{i} \in R_{i}^{*}$ for all $i=1,2, \ldots, k$. Thus $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in Z(R)$ if and only if $x_{i} \in Z\left(R_{i}\right)$ for some $i=1,2, \ldots, k$.

We need the following two lemmas. The proof of the first one is easy and we will skip it.

Lemma 2.4. Let $R=R_{1} \times R_{2} \times \cdots \times R_{k}$ be a finite ring. Then $x=$ $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ are adjacent in $\tau(R)$ if and only if one of the following conditions holds:
(1) x_{i} and y_{i} are adjacent in $\tau\left(R_{i}\right)$ for some $i=1,2, \ldots, k$.
(2) $x_{i}=y_{i}$ and $x_{i} \in Z\left(R_{i}\right)$ for some $i=1,2, \ldots, k$.
(3) $x_{i}=y_{i}$ and $2 \in Z\left(R_{i}\right)$ for some $i=1,2, \ldots, k$.

Lemma 2.5. Let $R=R_{1} \times R_{2} \times \cdots \times R_{k}$ be a finite ring and let S be any maximal independent set in $\tau(R)$. Then there exist $S_{1}, S_{2}, \ldots, S_{k}$ that are maximal independent sets in $\tau\left(R_{1}\right), \tau\left(R_{2}\right), \ldots, \tau\left(R_{k}\right)$, respectively, such that
$S \subset S_{1} \times S_{2} \times \cdots \times S_{k}$. Moreover, if $2 \notin Z\left(R_{i}\right)$ for all $i=1,2, \ldots, k$, then $S^{*}=S_{1}^{*} \times S_{2}^{*} \times \cdots \times S_{k}^{*}$.

Proof. Let M_{i} be the set of all $i^{\text {th }}$ coordinates of S for all $i=1,2, \ldots, k$. According to Lemma 2.4 the set M_{i} is an independent set in $\tau\left(R_{i}\right)$ for all $i=1,2, \ldots, k$. Let S_{i} be a maximal independent set in $\tau\left(R_{i}\right)$ such that $M_{i} \subset S_{i}$ for all $i=1,2, \ldots, k$. Therefore, $S \subset S_{1} \times S_{2} \times \cdots \times S_{k}$. If $2 \notin Z\left(R_{i}\right)$ for all $i=1,2, \ldots, k$, let $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right), y=\left(y_{1}, y_{2}, \ldots, y_{k}\right) \in S_{1}^{*} \times S_{2}^{*} \times \cdots \times S_{k}^{*}$. Since each one of the S_{i}^{*} 's is an independent set, then $x+y$ is a unit in R. Thus x and y are not adjacent in $\tau(R)$ and hence $S_{1}^{*} \times S_{2}^{*} \times \cdots \times S_{k}^{*}$ is an independent set in $\tau(R)$. Let $w=\left(w_{1}, w_{2}, \ldots, w_{k}\right) \in Z(S)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{k}\right) \in$ $S_{1}^{*} \times S_{2}^{*} \times \cdots \times S_{k}^{*}$. Then $w_{i}, y_{i} \in S_{i}$ for all $i=1,2, \ldots, k$. So w_{i} and y_{i} are not adjacent in $\tau\left(R_{i}\right)$ for all $i=1,2, \ldots, k$ and y_{i} is a unit for all $i=1,2, \ldots, k$. Thus according to Lemma 2.4 w and y are not adjacent in $\tau(R)$ and hence $\left(S_{1}^{*} \times S_{2}^{*} \times \cdots \times S_{k}^{*}\right) \cup Z(S)$ is an independent set in $\tau(R)$ containing S. Since S is a maximal independent set in $\tau(R)$, then $S=\left(S_{1}^{*} \times S_{2}^{*} \times \cdots \times S_{k}^{*}\right) \cup Z(S)$. Therefore $S^{*}=S_{1}^{*} \times S_{2}^{*} \times \cdots \times S_{k}^{*}$.

Theorem 2.6. Let $R=R_{1} \times R_{2} \times \cdots \times R_{k}$ be a finite ring with $2 \notin Z\left(R_{i}\right)$ for all $i=1,2, \ldots, k$. Then

$$
\alpha(\tau(R))=\prod_{i=1}^{k}\left(\alpha\left(\tau\left(R_{i}\right)\right)-1\right)+k \text { and } i(\tau(R))=\prod_{i=1}^{k}\left(\alpha\left(\tau\left(R_{i}\right)\right)-1\right)+1
$$

Moreover $\tau(R)$ is not well-covered for all $k \geq 2$.
Proof. Let S be any maximal independent set in $\tau(R)$. Then according to Lemma 2.5 there exist $S_{1}, S_{2}, \ldots, S_{k}$ that are maximal independent sets in $\tau\left(R_{1}\right), \tau\left(R_{2}\right), \ldots, \tau\left(R_{k}\right)$, respectively, such that $S \subset S_{1} \times S_{2} \times \cdots \times S_{k}$. According to Theorem $2.1 S_{i}$ contains exactly one zero divisor from R_{i} for all $i=1,2, \ldots, k$. Also, using Lemma 2.5

$$
\left|S^{*}\right|=\prod_{i=1}^{k}\left|S_{i}^{*}\right|=\prod_{i=1}^{k}\left(\alpha\left(\tau\left(R_{i}\right)\right)-1\right)
$$

Let $u=\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ and $v=\left(v_{1}, v_{2}, \ldots, v_{k}\right) \in Z(S)$. Since S is an independent set in $\tau(R)$, then $u_{i} \notin Z\left(R_{i}\right)$ or $v_{i} \notin Z\left(R_{i}\right)$ for all $i=1,2, \ldots, k$. Thus S has at most k zero divisors in R. Indeed S must contain at least one zero divisor in R to show that let w_{i} be the zero divisor of S_{i} in R_{i} for all $i=1,2, \ldots, k$. Then $\left(w_{1}, w_{2}, \ldots, w_{k}\right)$ is not adjacent to $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ in $\tau(R)$ for all $x \in S^{*}$. Therefore

$$
\prod_{i=1}^{k}\left(\alpha\left(\tau\left(R_{i}\right)\right)-1\right)+1 \leq|S| \leq \prod_{i=1}^{k}\left(\alpha\left(\tau\left(R_{i}\right)\right)-1\right)+k
$$

To show that $\alpha(\tau(R))=\prod_{i=1}^{k}\left(\alpha\left(\tau\left(R_{i}\right)\right)-1\right)+k$, let $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in S_{1}^{*} \times$ $S_{2}^{*} \times \cdots \times S_{k}^{*}$ and $S^{\prime}=\left\{\left(w_{1}, x_{2}, \ldots, x_{k}\right),\left(x_{1}, w_{2}, \ldots, x_{k}\right), \ldots,\left(x_{1}, x_{2}, \ldots, w_{k}\right)\right\}$. Then S^{\prime} is an independent set in $\tau(R)$ with k zero divisors in R. Take $S_{\alpha}=$ $\left(S_{1}^{*} \times S_{2}^{*} \times \cdots \times S_{k}^{*}\right) \cup S^{\prime}$. Observe that S_{α} is an independent set in $\tau(R)$ with $\left|S_{\alpha}\right|=\prod_{i=1}^{k}\left(\alpha\left(\tau\left(R_{i}\right)\right)-1\right)+k$. Hence S_{α} is a maximum independent set in $\tau(R)$ with

$$
\alpha(\tau(R))=\left|S_{\alpha}\right|=\prod_{i=1}^{k}\left(\alpha\left(\tau\left(R_{i}\right)\right)-1\right)+k .
$$

To show that $i(\tau(R))=\prod_{i=1}^{k}\left(\alpha\left(\tau\left(R_{i}\right)\right)-1\right)+1$, take $S_{\beta}=\left(S_{1}^{*} \times S_{2}^{*} \times \cdots \times\right.$ $\left.S_{k}^{*}\right) \cup\left\{\left(w_{1}, w_{2}, \ldots, w_{k}\right)\right\}$ and let $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \notin S_{\beta}$. If $x_{i} \in Z\left(R_{i}\right)$ for some $i=1,2, \ldots, k$, then x_{i} and w_{i} are adjacent in $\tau\left(R_{i}\right)$ and hence x and w are adjacent in $\tau(R)$ and if $x_{i} \in R_{i}^{*}$ for all $i=1,2, \ldots, k$, then x is a unit and $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \notin S_{1}^{*} \times S_{2}^{*} \times \cdots \times S_{k}^{*}$. So $x_{i} \notin S_{i}$ for some $i=1,2, \ldots, k$. But, since S_{i} is a maximal independent set in $\tau\left(R_{i}\right)$, then x_{i} is adjacent to y_{i} in $\tau\left(R_{i}\right)$ for some $y_{i} \in S_{i}$. Hence x must be adjacent to y in $\tau(R)$ for some $y \in S_{\beta}^{*}$ such that y_{i} is the $i^{t h}$ component of y. Thus S_{β} is a smallest maximal independent set in $\tau(R)$ and hence S_{β} is a smallest independent dominating set in $\tau(R)$. So

$$
i(\tau(R))=\left|S_{\beta}\right|=\prod_{i=1}^{k}\left(\alpha\left(\tau\left(R_{i}\right)\right)-1\right)+1
$$

Thus $\tau(R)$ is not well-covered for all $k \geq 2$.
Example 2.7. Let $R=\mathbb{Z}_{45}$. Then $R=\mathbb{Z}_{9} \times \mathbb{Z}_{5}, 2 \notin Z\left(\mathbb{Z}_{9}\right)$ and $2 \notin Z\left(\mathbb{Z}_{5}\right)$ with $\left|Z\left(\mathbb{Z}_{9}\right)\right|=3$ and $\left|Z\left(\mathbb{Z}_{5}\right)\right|=1$. So $\left|\mathbb{Z}_{9} / Z\left(\mathbb{Z}_{9}\right)\right|=3$ and $\left|\mathbb{Z}_{5} / Z\left(\mathbb{Z}_{5}\right)\right|=5$. By Theorem $2.3 \alpha\left(\tau\left(\mathbb{Z}_{9}\right)\right)=4$ and $\alpha\left(\tau\left(\mathbb{Z}_{5}\right)\right)=3$. Thus by Theorem 2.6

$$
\alpha(\tau(R))=(4-1)(3-1)+2=8 \text { and } i(\tau(R))=(4-1)(3-1)+1=7 .
$$

Consider $S_{1}=\{0,1,4,7\}$ and $S_{2}=\{0,1,2\}$. Then S_{1} and S_{2} are maximal independent sets in $\tau\left(\mathbb{Z}_{9}\right)$ and $\tau\left(\mathbb{Z}_{5}\right)$, respectively, and

$$
S_{1}^{*} \times S_{2}^{*}=\{(1,1),(1,2),(4,1),(4,2),(7,1),(7,2)\}
$$

Take $S_{\alpha}=\left(S_{1}^{*} \times S_{2}^{*}\right) \cup\{(0,1),(1,0)\}$ and $S_{\beta}=\left(S_{1}^{*} \times S_{2}^{*}\right) \cup\{(0,0)\}$. Then (according to the proof of Theorem 2.6) S_{α} is a maximum independent set in $\tau(R)$ and S_{β} is a smallest independent dominating set in $\tau(R)$ and with $\left|S_{\alpha}\right|=8$ and $\left|S_{\beta}\right|=7$.

Theorem 2.8. Let $R=R_{1} \times \cdots \times R_{k} \times R_{1}^{\prime} \times \cdots \times R_{m}^{\prime}$ be a finite ring with $2 \in Z\left(R_{i}\right)$ for all $i=1,2, \ldots, k$ and $2 \notin Z\left(R_{j}^{\prime}\right)$ for all $j=1,2, \ldots, m$. Then $i(\tau(R))=\alpha(\tau(R))=\min \left\{\alpha\left(\tau\left(R_{i}\right)\right): i=1,2, \ldots, k\right\}$. Moreover, $\tau(R)$ is wellcovered.

Proof. Without loss of generality we will assume that

$$
\alpha\left(\tau\left(R_{1}\right)\right)=\min \left\{\alpha\left(\tau\left(R_{i}\right)\right): i=1,2, \ldots, k\right\}=n
$$

Let S be any maximal independent set in $\tau(R)$. According to Lemma 2.5 $S \subset S_{1} \times \cdots \times S_{k} \times S_{1}^{\prime} \times \cdots \times S_{m}^{\prime}$, where $S_{1}, \ldots, S_{k}, S_{1}^{\prime}, \ldots, S_{m}^{\prime}$ are maximal independent sets in $\tau\left(R_{1}\right), \ldots, \tau\left(R_{k}\right), \tau\left(R_{1}^{\prime}\right), \ldots, \tau\left(R_{m}^{\prime}\right)$, respectively. Let $x=\left(x_{1}, \ldots, x_{k}, x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)$ and $y=\left(y_{1}, \ldots, y_{k}, y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right) \in S$. Since S is an independent set in $\tau(R)$, then $x=\left(x_{1}, \ldots, x_{k}, x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)$ and $y=$ $\left(y_{1}, \ldots, y_{k}, y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right)$ are not adjacent in $\tau(R)$. Therefore $x_{1} \neq y_{1}$. Because if $x_{1}=y_{1}$, then $x_{1}+y_{1}=2 x_{1} \in Z\left(R_{1}\right)$ and so $x+y \in Z(R)$ which is a contradiction. Thus $|S| \leq\left|S_{1}\right|=n$. Suppose $|S|<n \leq\left|S_{i}\right|$ for all $i=1,2, \ldots, k$. Thus there exists $u_{i} \in S_{i}$ such that u_{i} does not belong to the set of all $i^{\text {th }}$ coordinates of S for all $i=1,2, \ldots, k$. Take $u=\left(u_{1}, \ldots, u_{k}, u_{1}^{\prime}, \ldots, u_{m}^{\prime}\right)$, where u_{j}^{\prime} is a unit in S_{j}^{\prime} for all $j=1,2, \ldots, m$. Then $u \notin S$ and u is not adjacent to $x=\left(x_{1}, \ldots, x_{k}, x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)$ for all $x \in S$. Thus $S \cup\{u\}$ is an independent set in $\tau(R)$ which is a contradiction. Thus $|S|=n$. Thus all maximal independent sets have the same cardinality and we get $i(\tau(R))=\alpha(\tau(R))=\min \left\{\alpha\left(\tau\left(R_{i}\right)\right)\right.$: $i=1,2, \ldots, k\}$. Therefore $\tau(R)$ is well-covered.

Corollary 2.9. A finite ring R is well-covered if and only if R is a local ring or $R=R_{1} \times R_{2} \times \cdots \times R_{k}$ is a ring with $2 \in Z\left(R_{i}\right)$ for some $i=1,2, \ldots, k$.

Example 2.10. Let $R=\mathbb{Z}_{8} \times R_{2} \times \mathbb{Z}_{3}$, where $R_{2}=\mathbb{Z}_{2}[x] /\left(x^{2}+1\right)=$ $\{0,1, x, 1+x\}$. Then $2 \in Z\left(\mathbb{Z}_{8}\right), 2 \in Z\left(R_{2}\right)$ and $2 \notin Z\left(\mathbb{Z}_{3}\right)$ with $\left|Z\left(\mathbb{Z}_{8}\right)\right|=4$, $\left|Z\left(R_{2}\right)\right|=1$ and $\left|Z\left(\mathbb{Z}_{3}\right)\right|=1$. So $\left|\mathbb{Z}_{8} / Z\left(\mathbb{Z}_{8}\right)\right|=2,\left|R_{2} / Z\left(R_{2}\right)\right|=4$ and $\left|\mathbb{Z}_{3} / Z\left(\mathbb{Z}_{3}\right)\right|=3$. By Theorem 2.3, $\alpha\left(\tau\left(\mathbb{Z}_{8}\right)\right)=2, \alpha\left(\tau\left(R_{2}\right)\right)=4$ and $\alpha\left(\tau\left(\mathbb{Z}_{3}\right)\right)=$ 2. Using Theorem 2.8, we get

$$
\alpha(\tau(R))=\min \left\{\alpha\left(\tau\left(\mathbb{Z}_{8}\right)\right), \alpha\left(\tau\left(R_{2}\right)\right)\right\}=2
$$

Consider $S_{1}=\{0,1\}$. Then S_{1} is a maximal independent set in $\tau\left(\mathbb{Z}_{8}\right)$. Take $S=\{(0,0,1),(1,1,1)\}$. Then (according to the proof of Theorem 2.8) S is a maximal independent set in $\tau(R)$ with $|S|=2$.

References

[1] A. Abbasi and S. Habibi, The total graph of a commutative ring with respect to proper ideals, J. Korean Math. Soc. 49 (2012), no. 1, 85-98. https://doi.org/10.4134/JKMS. 2012.49.1.085
[2] S. Akbari, D. Kiani, F. Mohammadi, and S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213 (2009), no. 12, 2224-2228. https: //doi.org/10.1016/j.jpaa.2009.03.013
[3] N. Ananchuen, W. Ananchuen, and M. D. Plummer, Domination in graphs, in Structural analysis of complex networks, 73-104, Birkhäuser/Springer, New York, 2011. https: //doi.org/10.1007/978-0-8176-4789-6_4
[4] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008), no. 7, 2706-2719. https://doi.org/10.1016/j.jalgebra.2008.06.028
[5] D. F. Anderson and A. Badawi, On the total graph of a commutative ring without the zero element, J. Algebra Appl. 11 (2012), no. 4, 1250074, 18 pp. https://doi.org/10. 1142/S0219498812500740
[6] D. F. Anderson and A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl. 12 (2013), no. 5, 1250212, 18 pp. https://doi.org/10.1142/ S021949881250212X
[7] A. M. Dhorajia, Total graph of the ring $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$, Discrete Math. Algorithms Appl. 7 (2015), no. 1, 1550004, 9 pp. https://doi.org/10.1142/S1793830915500044
[8] W. Goddard and M. A. Henning, Independent domination in graphs: a survey and recent results, Discrete Math. 313 (2013), no. 7, 839-854. https://doi.org/10.1016/j.disc. 2012.11.031
[9] H. R. Maimani, C. Wickham, and S. Yassemi, Rings whose total graphs have genus at most one, Rocky Mountain J. Math. 42 (2012), no. 5, 1551-1560. https://doi.org/10. 1216/RMJ-2012-42-5-1551
[10] A. Mishra and K. Patra, Domination and independence parameters in the total graph of \mathbb{Z}_{n} with respect to Nil ideal, IAENG Intern. J. Appl. Math. 50 (2020), no. 3, 707-712.
[11] K. Nazzal, Total graphs associated to a commutative ring, Palest. J. Math. 5 (2016), Special Issue, 108-126.
[12] M. D. Plummer, Some covering concepts in graphs, J. Combinatorial Theory 8 (1970), 91-98.
[13] M. D. Plummer, Well-covered graphs: a survey, Quaestiones Math. 16 (1993), no. 3, 253-287.
[14] M. H. Shekarriz, M. H. Shirdareh Haghighi, and H. Sharif, On the total graph of a finite commutative ring, Comm. Algebra 40 (2012), no. 8, 2798-2807. https://doi.org/10. 1080/00927872.2011.585680
[15] W. Willis, Bounds for the independence number of a graph, Master Thesis in Virginia Commonwealth University, 2011.

Baha' Abughazaleh
Department of Mathematics
Isra University
Amman, Jordan
Email address: baha.abughazaleh@iu.edu.jo
Omar AbedRabbu Abughneim
Department of Mathematics
The University of Jordan
Amman, Jordan
Email address: o.abughneim@ju.edu.jo

[^0]: Received October 19, 2021; Accepted January 14, 2022.
 2020 Mathematics Subject Classification. 13M99, 05C69.
 Key words and phrases. Total graph of a commutative ring, zero divisors, independence number, independent dominating number, well-covered graphs.

