
Comm. Korean Math. Soc. 3(1988), No. 2, pp. 189""'195

ON NORMALIZED TOPOLOGICAL DIVISORS OF

ZERO ON BANACH*-ALGEBRA

SANG HUN LEE*

1. Introduction

In [4], M. Fujii and S. Lin introduced the normalized topological
divisors of zero and studied some characterizations of normal approximate
spectra. The object of this paper is to study the inclusion relations
among the set of normalized topological divisors of zero, spectrum and
the left and right topological divisors of zero for a Banach*-algebra.
Thus we obtain some generalizations of these sets for the B*-algebra.
In the last section, we obtain a generalization of Gelfand-Majur Theorem
and give elementary proofs of well known results in the Banach algebra
Theory.

Since every B*-algebra is isometrically *-isomorphic to a C*-algebra
of bounded operators on some Hilbert spaces, so the above results for
spectra apply to the spectrums of the algebra of bounded operators on
some Hilbert space.

Throughout this paper, all algebras and vector spaces will be over
the complex field C. Algebras are assumed to have an unity element,
which will be denoted bye.

2. Main results and terminologies

An element x in a normed algebra X is called a left (right)
topological divisor of zero, briefly, a left (right) TDZ, provided there
exists a sequence ynEX of unit elements such that xYn---+O (YnX---+O).
It is merely called a TDZ if it is either a left or a right TDZ. It is
a two-sided TDZ if it is both a left and a right TDZ.
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DEFINITION 2.1. Let X be a normed algebra. For xEX, we shall
define three subsets L(x), R(x) and LR(x) of C by

L(x) = {zEC : x-ez is a left TDZ},
R(x) = {zEC : x-ez is a right TDZ}, and
LR(x) = {zEC : x-ez is a two-sided TDZ}.

LEMMA 2.2[4J[7]. Let X be a normed algebra. For a fixed xEX let
f~ and g" be two functions on C defined by

f,,(z)=inj"(x-ez)Y1I and g,,(z)=inf lIy(x-ez)1I •
yEX lIyll yEX lIyll

Then (1) f" and g" are continuous. In fact, we have

If,,(z)-f,,(u)I<lz-ul and Ig,,(z)-g,,(u)I<lz-ul.

(2) zEL(x) iff f,,(z) =0 and

zER(x) iff g,,(z) =0.

(3) If (x-ez) (x-eu) tS a left (right) TDZ, then either z or
uEL(x)(R(x». In fact, we have

/ ( )/ ( )< . if 11 (x-ez) (x- eu)Y1I
"z "u -~x lIyll

() ( )<. f l!y(x-ez)(x-eu)1I
g" z g" U _t:,x lIyll •

DEFINITION 2. 3. A Banach algebra X is a Banach*-algebra if there
is an involution a--+a* defined on X with the following properties:

(a) (aa+f3b)*=iia*+pb*,
(b) a**=a,
(c) (ab)*=b*a* and
(d) lIa*II=lIall for a, b in X; a, f3 in C.

In what follows unless exception is noted, X denotes a Banach*-algebra.

DEFINITION 2. 4. xEX is called a normalized topological divisor of
zero, briefly, NTDZ, if there exists a sequence y"EX of unit elements
such that xy,,--+O and x*Yn~O.

For a :fixed xEX, the set q,,(x) of all zEC such that x-ez is a
NTDZ is called the normal spectrum of x.
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As usual a(x) denotes the spectrum of xEX and aa(x) its boundary.

THEOREM 2.5. For xEX, an(x)CL(x) nR(x)CL(x) UR(x)Ca(x).

Proof. First we shall show that an(x)CL(x) nR(x). Let zEan(x).
Then x-ez is an NTDZ. i.e., there exists a sequence ynEX of unit
elements such that (x-ez)yn---+O and (x-ez)*Yn---+O. Since ((x-ez)*
Yn)*=Yn*(x-ez) and IIYn*II=IIYnll=l for all n. Hence zEL(x) nR(x).
Finally to show the last inclusion, let zEL(x) UR(x). Then x-ez is
either left or right singular, and so zEa(x).

COROLLARY 2. 6. For xEX and AEC

(1) AEan(x) iff P"O) =0, where P,,(A)=iynJx l!(x-eA)YII,t\\(x-eA)*YII

(2) AELR(x) iff f"O) =g,,(A) =0 iff q,,(A) =0,

where q,,(A)=~~{ II(x-eA)YIII~I:y(x-eA)1I and f" and g" are as

in Lemma 2.2.
(3) If f,,(A) =0 or g"O) =0, then AEa(x).

Proof. (l) If AEan(x), then X-Ae is an NTDZ. Hence there exists
a sequence ynEX such that IIYnll=l and (x-Ae)Yn---+O and (x-Ae)*Yn
---+0. Since

inf jl(x-AeL.TIL+JI (x-Ae)*YII < inf (11 (x- Ae) Ynll + 11 (x-Ae) *Ynll) ,
yEX IIYII y. EX

C1IY.II=O

we have P,,(A) =0.
Conversely, if P,,(A) =0, there exists a sequence ynEX such that

IIYnll=l and 11 (x-Ae)Ynll+lI(x-Ae)*Ynll---+O. Hence AEan(x).
(2) is obvious.
(3) If AEL(x) UR(x), then AEa(x) results from Lemma 2.2 and

Theorem 2. 5.

COROLLARY 2. 7. Let X be a B*-algebra.
(1) If xEX is a hyponormal element, i.e., x*x>xx*, then

an (x) =L(x) CR(x) =a(x).
(2) If xEX is a normal element, i.e., x*x=xx*, then

an (x) =L(x) =R(x) =a(x) =LR(x).
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Proof. (1) x -.i1e is a hyponormal iff x is a hyponormal. Thus in
order to show that an (x) =L(x), it is sufficient to show that if OEL(x)
then OEan(x). Since x*x>xx* and X is a B*-algebra, (XYn)*(XYn»
(X*Yn)*(X*Yn) for any bounded sequence ynEX. Then IIxYnW>lIx*YnIl 2

,

since (X*Yn) * (X*Yn) >0. Thus XYn-O implies X*Yn-O; so L(x) =an(x).
The last equality is well known, since X is a B*-algebra.
(2) The equalities hold because of (1), since x is a normal and

R(x)=L(x).

DEFINITION 2.8. xEX is called a M-hyponormal element if there
exists a number M such that 11 (x-Ae)*YII<MII(x-Ae)Y11 for all Y in X
and for all .i1 in C.

THEOREM 2. 9. Let X be a B*-algebra.lf xEX is an M-hyponormal

element, then Re a(x) Ca(Re x), where Rex= ~ (x+x*).

Proof. Let .i1 be in Re a(x). Then there exists zEoa(x) such that
Rez=A. Since oa(x)CLR(x)=an(x)=L(x)CR(x)=a(x) by x is a

M-hyponormal element, so (Re x-Ae)Yn= [Re(x-z)JYn= ~ [(x-ez) +

(x-ez)*]Yn-O and IIYnll=l for all n. Hence AEa (Re x).

THEOREM 2.10. Let xEX. Then R(x), an(x) and LR(x) are all
compact subsets of a(x).

Proof. To show that R(x) is closed in a(x), we prove that if z$.
R(x), then any uEC with Iz-ul<g,.(z) is not in R(x), because
O<g,.(z) -Iz-uj <g.,(u) by Lemma 2.2. It shows that R(x) is closed
in a(x) and hence a compact subset of C. Similarly, L(x) is compact.
As for an(x) and LR(x), we have

( ) _. fll(x-ze)YII+lIy(x-ze)1I
q,. z -~~x lIylI

< 11 (ue-ze)y+ (x-ue)Y11 + lIy(ue-ze) +y(x-ue) 11

- lIylI lIylI
<2Iz-ul +q,.(u)

Similarly IP.,(z) -P,,(u) I<2Iz-ul. The same argument as for R(x)
shows that an(x) and LR(x) are compact subsets of C.
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COROLLARY 2.11. For a fixed zEC, the following four sets are closed
in X. {x: x-ze is a left TDZ} , {x: x-ze is a right TDZ}, {x:
x-ze is a NTDZ} and {x: x-ze is a two sided TDZ}.

Poof. Define h.(x) =inf 11 (x-ze)YlI. Then xE {x : x-ze is a left
yEX lIyll

TDZ} iff h.(x) =0. Also, h.(x)<IIx-YII+h.(y) for y in X, and by the
same argument as in theorem 2.12, {x: x-ze is a left TDZ} is closed

in X. Let l.(x)=~~~ lI(x-ze)yllit,I,\(x-ze)*YII. ThenxE{x:x-ze is

a NTDZ} iff I. (x) =0. Also 1.(x)<2I1x-YII+I.(y) for y in X, hence
{x: x-ze is a NTDZ} is closed in X. The proofs of other cases are
similar to those of the previous ones and are omitted.

3. Applications of topological divisors of zero

Let A be an algebra; let GI=GI(A) be the set of all left invertible
elements of A and GT=GT(A) be the set of all right invertible elements
of A and we define al(x) = {zEC: x-ezE;EGI}, aT (x) = {zEC : x-ez$.GT}
and the two sided spectrum at(x)=al(x) naT(x). We also define the
resolvent set P(x) =a(x)c, where a(x)c is the complement of a(x), and
PI(X) =al(x)c, p,(x) =a,(x)c and Pt(x) =at(x)c=PI(X) UPT(X) are defined.

LEMMA 3.1. Let A be a normed algebra with continuous inverse [6].
If xEA, then oa(x)CLR(x).

Proof. Since a(x) is a nonempty closed subset of C [6J, we obtain
that oa(x) is a nonempty set. Let zEoa(x). Then zEa(x) and there
exists a sequence {Zn} in a(x)c such that lim Zn=Y. Therefore ze-x is

n-oo

not invertible but lim(zne-x) =ze-x. Thus ze-x is the boundary of
n-oo

the invertible elements, so ze-x is a two sided TDZ.

THEOREM 3. 2. Let A be a normed algebra with continuous inverse. If
xEA, then at(x) is a nonempty closed subset of C.

Proof. Since oa(x) is a nonempty set, let zEoa(x), then x-ze is a
two sided TDZ. So there exists a sequence Yn in A such that IIYnll = 1,
(x-ze)y"~O and y"(x-ze)~O. Suppose that a(x-ze)=e. Then 1=
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IIYnll= IIeYn 11 =/Ia(x-ze)Ynll</Iallll (x-ze)yn/l-O. It is a contradiction. So
zEa/(x). Similarly zEar(x). Thus oa(x)Ca/(x) nar(x) =at(x). Hence
at(x) is a nonempty. Since at(x)Ca(x), to show that at(x) is closed,
it is sufficient to show that Pt (x) is open. This follows immediately,
since G/(A) UGT(A) is open.

COROLLARY 3. 3. If A is a Banach algebra and xEA, then a/ (x) and
ar(x) are nonempty compact subset of e.

Proof. Since a (x) is a compact subset of e, at (x) Ca/ (x) (ar(x» C

a(x) and a/(x)c=p/(x) is open, these results are obvious.

COROLLARY 3. 4. If A is a Banach algebra in which every nonzero
element is left invertible or right invertible, then A is (isometrically
isomorphic to) the complex field e.

Proof. Let xEA be arbitrary and zEat(x). Then ze-x$G/(A) U
GT(A), this implies that ze-x=O; so x=ze.

Remark. This corollary improves the Gelfand-Mazur Theorem [8J,
but the proof given above is more elementary.

THEOREM 3.5. Let A be a Banach algebra, and let xEA. If a(x)O
=4> (i.e., a(x) has empty interior), then at (x) =al(x) =0', (x) =a(x).

Proof. Since a(x)=oa(x), we must show that oal(x)Ca,(x) and
oa,(x)Ca/(x). First we prove that oa/(x)Co,(x). Let zEoa/(x). Then
there exists a sequence {Zn} in al(x)c such that Zn-Z, but zEal(X). If
z$aT(x), then ze-xEG,(A). Since G,(A) is open and Zne-x-ze-x,
so zne-xEG,(A) for sufficiently many n; so znEa,(x). We may assume
that {Zn} Cp,(x) nPT(X) =p(x) for all n. But then {zn} Cp(x), zEa(x)
and Zn-Z. So zEoa(x)Ca,(x). It is a contradiction. So oa/(x)Ca,(x)
Ca(x). Similarly we have oa,(x)Ca/(x)Ca(x). Consequently oa/(x)C
aT(x) na/(x) =at(x)Ca(x) =&a(x). Thus a(x) =at(x) and the another
equalities are analogous.
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