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ON PROPERTIES RELATED TO REVERSIBLE RINGS

Da Woon Jung, Nam Kyun Kim, Yang Lee, and Sung Ju Ryu

Abstract. We study the connections between idempotents and zero-
divisors in several kinds of ring theoretic properties. We next study sev-
eral ring theoretic properties and examples related to reversible rings.

1. Connections between idempotents and zero-divisors

Throughout this note every ring is associative with identity unless other-
wise stated. Let R be a ring (possibly without identity). Denote the n by n
full (resp., upper triangular) matrix ring over R by Matn(R) (resp., Un(R)).
Following the literature, we use Dn(R) = {(aij) ∈ Un(R) | all diagonal entries
are equal}. Use eij for the matrix with (i, j)-entry 1 and elsewhere 0. Z (Zn)
denotes the ring of integers (modulo n). Let J(R), N∗(R), N∗(R), and N(R)
denote the Jacobson radical, the prime radical, the upper nilradical (i.e., sum
of all nil ideals), and the set of all nilpotent elements in R, respectively. It is
well-known that N∗(R) ⊆ J(R) and N∗(R) ⊆ N∗(R) ⊆ N(R). Use I(R) to
denote the set of all idempotents in R.

A ring is usually called reduced if it has no nonzero nilpotent elements. Due
to Lambek [17], a ringR is symmetric if rst = 0 implies rts = 0 for all r, s, t ∈ R.
While, Anderson-Camillo [4] used the term ZC3 for symmetric. Commutative
rings are clearly symmetric. Reduced rings are symmetric by [4, Theorem
I.3], but there are many kinds of non-reduced commutative rings (e.g., Znl for
n, l ≥ 2). Note that a ring R is symmetric if and only if r1r2 · · · rn = 0 implies
rσ(1)rσ(2) · · · rσ(n) = 0 for any permutation σ of the set {1, 2, . . . , n}, where
ri ∈ R and n is any positive integer, by [4, Theorem I.1]. Following Cohn [8], a
ring R is reversible if ab = 0 implies ba = 0 for a, b ∈ R. Anderson-Camillo [4]
used the term ZC2 for reversible. Symmetric rings are clearly reversible, but
the converse need not hold by [4, Example I.5] or Marks [18, Examples 5 and
7]. Following to Bell [7], a ring R is said to satisfy the Insertion-of-Factors-

Property (simply, an IFP ring) if ab = 0 implies aRb = 0 for a, b ∈ R. It is
easily checked that reversible rings are IFP. A ring is usually called Abelian if
every idempotent is central. IFP rings are Abelian rings by [21, Lemma 2.7]
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but the converse fail in general. It is well-known that N∗(R) = N∗(R) = N(R)
for an IFP ring R. We will use freely the facts above.

We first connect idempotents with zero-divisors in reduced rings.

Proposition 1.1. For a ring R the following conditions are equivalent:
(1) R is reduced;
(2) a2 ∈ I(R) implies a = a3 for a ∈ R.

Proof. (1)⇒(2). Let R be reduced. Assume a2 ∈ I(R) for a ∈ R. Then
a2(1−a2) = 0 implies (a(1−a2))2 = 0 since R is reduced, entailing a(1−a2) = 0.
So a = a3.

(2)⇒(1). Assume the condition (2). Let a2 = 0 for a ∈ R. Then a = a3 by
the condition, so a = a3 = 0. �

Proposition 1.2. For a ring R the following conditions are equivalent:
(1) R is a reduced ring of characteristic 2;
(2) a2 ∈ I(R) implies a ∈ I(R) for a ∈ R.

Proof. (1)⇒(2). Let R be a reduced ring of characteristic 2. Assume a2 ∈ I(R)
for a ∈ R. Then a2(1− a2) = 0. But since R is of characteristic 2, we get

0 = a2(1− a2) = a2(1− a)(1 + a) = a2(1 − a)(1− a) = a2(1− a)2.

Since R is reduced, we have (a(1− a))2 = 0, entailing a(1− a) = 0. So a = a2.
(2)⇒(1). Assume the condition (2). Let a2 = 0 for a ∈ R. Then a = a2 by

the condition, so a = 0. Assume on the contrary that the characteristic of R is
not 2.

If the characteristic of R is zero, then Z ⊆ R and (−1)2 = 1 ∈ I(R) but
−1 /∈ I(R), a contradiction to the condition (2).

Next if the characteristic of R is n ≥ 3, then Zn ⊆ R and (n−1)2 = (−1)2 =
1 ∈ I(R) but n− 1 /∈ I(R), a contradiction to the condition (2). �

The following argument elaborates Proposition 1.2.

Remark 1.3. (1) Let R be a ring of any characteristic and a ∈ R. Assume
that R satisfies the condition that a2 ∈ I(R) implies a ∈ I(R). Then R being
reduced can be shown by Proposition 1.1.

(2) If the characteristic of a ring R is a prime p ≥ 3, then (1 + a)p = 1 + a
for any a ∈ R by help of [13, Exercises 3.1.10(e)].

We next connect idempotents with zero-divisors in reversible rings.

Proposition 1.4. For a ring R the following conditions are equivalent:
(1) R is reversible;
(2) ab ∈ I(R) implies ba ∈ I(R) for a, b ∈ R.

Proof. (1)⇒(2). Let R be reversible. Assume ab ∈ I(R) for a, b ∈ R. Then
ab(1 − ab) = 0. But since R is reversible, we get 0 = b(1 − ab)a = ba − baba.
So ba ∈ I(R).
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(2)⇒(1). Assume the condition (2). Let ab = 0. Then ba ∈ I(R) by the
condition, so ba = baba = 0. �

Corollary 1.5. Let R be a reversible ring. If ab ∈ I(R) for a, b ∈ R, then

ab = ba.

Proof. Let R be a reversible ring and assume that ab ∈ I(R) for a, b ∈ R. Then
ba ∈ I(R) by Proposition 1.4. Then we have

ba = baba = b(ab)a = (ab)ba = ab(ba) = a(ba)b = abab = ab

since R is Abelian. �

We next connect idempotents with zero-divisors in symmetric rings.

Proposition 1.6. For a ring R the following conditions are equivalent:
(1) R is symmetric;
(2) abc ∈ I(R) implies acb = acbcab for a, b, c ∈ R;
(3) abc ∈ I(R) implies acb = acbbca for a, b, c ∈ R;
(4) abc ∈ I(R) implies acb = acbabc for a, b, c ∈ R.

Proof. (1)⇒(2). Let R be symmetric. Assume abc ∈ I(R) for a, b, c ∈ R.
Then abc = abcabc yields ab(1 − cab)c = 0. But since R is symmetric, we get
acb(1− cab) = 0, entailing acb = acbcab.

(2)⇒(1). Assume the condition (2). We first show that R is reversible. Let
de = 0 for d, e ∈ R. Then

ed = 1ed = 1ede1d = 0

by the condition, entailing that R is reversible. Next assume that abc = 0 for
a, b, c ∈ R. Then acb = acbcab by the condition. But abc = 0 yields acbcab = 0
since R is IFP.

The equivalences of the conditions (2), (3), and (4) are shown by help of
Corollary 1.5, noting that abc = bca = cab whenever abc ∈ I(R). �

Let R be a ring and a, b, c ∈ R. Assume that R satisfies the condition that
abc ∈ I(R) implies acb ∈ I(R). Then R is symmetric by a similar method
to the proof of Proposition 1.6. However we do not know whether symmetric
rings yield the condition.

Question. Does a symmetric ring R satisfy the condition that abc ∈ I(R)
implies acb ∈ I(R) for a, b, c ∈ R?

Proposition 1.7. For a ring R the following conditions are equivalent:
(1) R is IFP;
(2) For a, b ∈ R, ab ∈ I(R) implies arb = arbab for all r ∈ R.

Proof. (1)⇒(2). Let R be a IFP ring. Assume ab ∈ I(R) for a, b ∈ R. Then
ab(1−ab) = 0 yields abr(1−ab) = 0 for all r ∈ R since R is IFP. So arb = arbab
for all r ∈ R.
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(2)⇒(1). Assume the condition (2). Let ab = 0 for a, b ∈ R. Then for all
r ∈ R arb = arbab = 0 by the condition. �

Proposition 1.8. Let R be a ring. Assume that R satisfies the condition that

ab ∈ I(R) implies arb ∈ I(R) for all r ∈ R, where a, b ∈ R. Then R is IFP.

Proof. Let ab = 0 for a, b ∈ R. Then, by assumption, arb ∈ I(R) for all r ∈ R.
Moreover, (barbar)2 = b(arbarbarb)ar = b(arb)ar, so barbar ∈ I(R). Thus
arb = arbarbarb = ar(barbar)b = a(barbar)rb = 0 since R is Abelian. �

The converse of Proposition 1.8 need not hold. Let R be a reduced ring.
Then D3(R) is IFP by [16, Proposition 1.2]. And (e11 + e22 + e33)(e11 + e22 +
e33) = e11 + e22 + e33 ∈ I(D3(R)) but (e11 + e22 + e33)e13(e11 + e22 + e33) =
e13 /∈ I(D3(R)).

2. Related concepts and examples

Symmetric rings play an important role in noncommutative ring theory as
well as reversible rings. The concept of symmetric rings was introduced by
Lambek [17] to unify sheaf representations of commutative rings and reduced
rings. Prior to Cohn’s work, reversible rings were studied under the names
completely reflexive and zero commutative by Mason [19] and Habeb [11], re-
spectively. Tuganbaev [22] investigated reversible rings in his monograph on
distributive lattices arising in ring theory, using the name commutative at zero

in place of reversible. Recently, various generalized conditions of symmetric
and reversible rings have studied by many authors, and the results obtained
here were applied to many sorts of problems arising in noncommutative ring
theory. In this section, of particular interest will be central symmetric and
central reversible rings. We continue the study of Kafkas et al. [14], providing
more results for the structure. Thus this work can also provide a sort of bridge
between commutative and noncommutative ring theory.

Following Kafkas et al. [14], a ring R is called central symmetric if for any
a, b, c ∈ R, abc = 0 implies bac belongs to the center of R. Commutative rings,
reduced rings and symmetric rings are clearly central symmetric. One may
suspect that central symmetric ring property is left right symmetric. However
we answer this question negatively in the following two examples. Use Z(R)
to denote the set of all centers in R.

Example 2.1. Let Z2 be the field of integers modulo 2 and A = Z2〈a, b〉 be
the free algebra generated by noncommuting indeterminates a, b over Z2. Let
I be the ideal of A generated by

a2b, b2a, abab, baba and r1r2r3r4r5,

where r1, r2, r3, r4, r5 ∈ R and set R = A/I. We identity every element of
A with its image in R for simplicity. We have aab = 0, but (aba)a 6= 0 and
a(aba) = 0, entailing aba /∈ Z(R); hence R is not the right version of central
symmetric.
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We will show that R is central symmetric. Let α, β, γ ∈ R. Then α, β and
γ can be express as in the following forms:

α = α0 + f1(a) + g1(b) + ag2(b) + bf2(a) + abf3(a) + bag3(b),

β = β0 + h1(a) + k1(b) + ak2(b) + bh2(a) + abh3(a) + bak3(b)

and γ = γ0 + l1(a) +m1(b) + am2(b) + bl2(a) + abl3(a) + bam3(b),

where α0, β0, γ0 ∈ Z2, fi(x), gi(x), hi(x), ki(x), li(x),mi(x) ∈ Z2(x) for all i, j
and the constant terms of fi(x), gi(x), hi(x), ki(x), li(x),mi(x) are all zero. Now
suppose αβγ = 0. Then

0 = αβγ

= α0β0γ0 + {α0β0l1(a) + α0γ0h1(a) + β0γ0f1(a) + α0h1(a)l1(a)

+ β0f1(a)l1(a) + γ0f1(a)h1(a) + f1(a)h1(a)l1(a)}+ {α0β0m1(b)

+ α0γ0k1(b) + β0γ0g1(b) + α0k1(b)m1(b) + β0g1(b)m1(b) + γ0g1(b)k1(b)

+ g1(b)k1(b)m1(b)} + {α0β0am2(b) + α0γ0ak2(b) + β0γ0ag2(b)

+ α0h1(a)m1(b) + α0ak2(b)m1(b) + β0f1(a)m1(b) + β0ag2(b)m1(b)

+ γ0f1(a)k1(b) + γ0ag2(b)k1(b) + f1(a)k1(b)m1(b) + ag2(b)k1(b)m1(b)}

+ {α0β0bl2(a) + α0γ0bh2(a) + β0γ0bf2(a) + α0k1(b)l1(a) + α0bh2(a)l1(a)

+ β0g1(b)l1(a) + β0bf2(a)l1(a) + γ0g1(b)h1(a) + γ0bf2(a)h1(a)

+ g1(b)h1(a)l1(a) + bf2(a)h1(a)l1(a)}+ {α0β0abl3(a) + α0γ0abh3(a)

+ β0γ0abf3(a) + α0h1(a)bl2(a) + α0ak2(b)l1(a) + α0abh3(a)l1(a)

+ β0f1(a)bl2(a) + β0ag2(b)l1(a) + β0abf3(a)l1(a) + γ0f1(a)bh2(a)

+ γ0ag2(b)h1(a) + γ0abf3(a)h1(a) + f1(a)k1(b)l1(a) + f1(a)bh2(a)l1(a)

+ ag2(b)h1(a)l1(a)}+ {α0β0bam3(b) + α0γ0bak3(b) + β0γ0bag3(b)

+ α0k1(b)am2(b) + α0bh2(a)m1(b) + α0bak3(b)m1(b) + β0g1(b)am2(b)

+ β0bf2(a)m1(b) + β0bag3(b)m1(b) + γ0g1(b)ak2(b) + γ0bf2(a)k1(b)

+ γ0bag3(b)k1(b) + g1(b)h1(a)m1(b) + g1(b)ak2(b)m1(b)

+ bf2(a)k1(b)m1(b)}.

So we obtain α0 = 0, β0 = 0 or γ0 = 0 since α0β0γ0 is unique in the expansion
of αβγ.

If α0 = 0, β0 = γ0 = 1, then f1(a)+f1(a)l1(a)+h1(a)f1(a)+h1(a)f1(a)l1(a)
= 0, entailing f1(a) = 0. Similarly, g1(b) = bf2(a) = ag2(b) = abf3(a) =
bag3(b) = 0. Thus α = 0. Similarly, if β0 = 0, α0 = γ0 = 1, then β = 0. Also,
if γ0 = 0, α0 = β0 = 1, then γ = 0

Case 1. α0 = β0 = 0 and γ0 = 1.
We have

f1(a)h1(a) + f1(a)h1(a)l1(a) = 0;

g1(b)k1(b) + g1(b)k1(b)m1(b) = 0;
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ak1(b) + ag2(b)k1(b) + ak1(b)m1(b) + ag2(b)k1(b)m1(b) = 0;

bh1(a) + bf2(a)h1(a) + bh1(a)l1(a) + bf2(a)h1(a)l1(a) = 0;

abh2(a) + abh1(a) + abf3(a)h1(a) + abl1(a) + abh2(a)l1(a) + abh1(a)l1(a) = 0;

bak2(b) + bak1(b) + bag3(b)k1(b) + bam1(b) + bak2(b)m1(b) + bak1(b)m1(b) = 0.

Then k1(b) = h1(a) = bh2(a) = l1(a) = ak2(b) = m1(b) = 0. Thus βαγ =
abh3(a)f1(a) + bak3(b)g1(b) ∈ Z(R).

Case 2. β0 = γ0 = 0 and α0 = 1.
We have

h1(a)l1(a) + f1(a)h1(a)l1(a) = 0;

k1(b)m1(b) + g1(b)k1(b)m1(b) = 0;

am1(b) + ak2(b)m1(b) + ak1(b)m1(b) + ag2(b)k1(b)m1(b) = 0;

bl1(a) + bh2(a)l1(a) + bh1(a)l1(a) + bf2(a)h1(a)l1(a) = 0;

abl2(a) + abl1(a) + abh3(a)l1(a) + abl1(a) + abh2(a)l1(a) + abh1(a)l1(a) = 0;

bam2(b)+bam1(b)+bak3(b)m1(b)+bam1(b)+bak2(b)m1(b)+bak1(b)m1(b) = 0.

Then m1(b) = l1(a) = bl2(a) = am2(b) = 0. Thus βαγ = 0.

Case 3. α0 = γ0 = 0 and β0 = 1.
We get βαγ = 0 by a similar to the computation in Case 2.

Case 4. α0 = 0, β0 = 0 and γ0 = 0.
We have

f1(a)h1(a)l1(a) = g1(b)k1(b)m1(b) = 0;

ak1(b)m1(b) + ag2(b)k1(b)m1(b) = 0;

bh1(a)l1(a) + bf2(a)h1(a)l1(a) = 0;

abl1(a) + abh2(a)l1(a) + abh1(a)l1(a) = 0;

bam1(b) + bak2(b)m1(b) + bak1(b)m1(b) = 0.

Then l1(a) and m1(b) = 0. Thus βαγ = 0.
Summarizing, we now have βαγ ∈ Z(R) in any case, concluding that R is

central symmetric.

Example 2.2. Let Z2 be the field of integers modulo 2 and A = Z2〈a, b〉 be
the free algebra generated by the noncommuting indeterminates a, b over Z2.
Let I be the ideal of A generated by

ab2, ba2, abab, baba and r1r2r3r4r5,

where r1, r2, r3, r4, r5 ∈ R and set R = A/I. We identity every element of
A with its image in R for simplicity. We have abb = 0, but b(bab) 6= 0 and
(bab)b = 0, entailing bab /∈ Z(R); hence R is not a central symmetric ring.
However R is the right version of central symmetric by a similar method to the
computation in Example 2.1.
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Due to Examples 2.1 and 2.2, a ring R are will be called right central sym-

metric if abc = 0 implies acb ∈ Z(R); and left central symmetric if abc = 0
implies bac ∈ Z(R). It is also obviously that commutative rings, reduced rings
and symmetric rings are both left and right central symmetric. As a general-
ization of reduced rings, a ring is called central reduced [1] if every nilpotent
element is central. Central reduced rings are left central symmetric by [14,
Lemma 2.5]. We can obtain that central reduced rings are also right central
symmetric by applying the method of [14, Lemma 2.5].

Lemma 2.3. If a ring R is a central reduced ring, then it is right central

symmetric.

Proof. We apply the proof of [14, Lemma 2.5]. Suppose abc = 0 for a, b, c ∈ R.
Then, for all r ∈ R, (bcra)2 = (bcra)(bcra) = 0 so bcra is central since R is cen-
tral reduced. And (crasb)2 = (crasb)(crasb) = cras(bcra)sb = cra(bcra)ssb =
0 and hence crasb ∈ Z(R) for any r, s ∈ R. So (acb)4 = a(cbacb)a(cbacb) =
aa(cbacb)2 = 0 and thus acb is central. �

Let R be a right central symmetric ring and a, b, c ∈ R. Then we have the
following: (1) abc = 0 ⇒ acb ∈ Z(R); (2) 1a(bc) = abc = 0 ⇒ bca ∈ Z(R), so
bcbca = bcabc = 0; and (3) 1(ab)c = abc = 0 ⇒ cab ∈ Z(R), so ccab = cabc = 0.

A ring R is called central reversible if for any a, b ∈ R, ab = 0 implies
ba is central in R by [14]. Clearly left or right central symmetric rings are
central reversible for rings with identity but the converse need not hold by [14,
Example 2.8]. Also reversible rings are obviously central reversible. We now
give an example to show that there exists a central reversible ring which is not
a reversible ring.

Example 2.4. Let R be a commutative and reduced ring. Note that Z(D3(R))

=
{(

a 0 α
0 a 0
0 0 a

)

| a, α ∈ R
}

. Next, suppose that ABC = 0 for A =

(

a1 b1 c1
0 a1 d1

0 0 a1

)

,

B =

(

a2 b2 c2
0 a2 d2

0 0 a2

)

and C =

(

a3 b3 c3
0 a3 d3

0 0 a3

)

∈ D3(R). Then a1a3a2 = a1a3b2 +

a1b3a2 + b1a3a2 = a1a3d2 + a1d3a2 + d1a3a2 = 0. So ACB =
(

0 0 β
0 0 0
0 0 0

)

∈

Z(D3(R)), where β = a1a3c2+a1b3d2+b1a3d2+a1c3a2+b1d3a2+c1a3a2. Thus
D3(R) is right central symmetric and so central reversible. Since e23e12 = 0
but e12e23 = e13 6= 0, D3(R) is not reversible and hence is not symmetric.

Above example also means that right central symmetric need not be sym-
metric. However central reversible and IFP are independent of each other by
the following.

Example 2.5. Let K be a field and R = K〈a, b, c | ab, bac− cba, ara, brb, crc〉
for all r ∈ R. Then, clearly R is not IFP. We claim R is right central symmetric.
Note that every element of R can be written uniquely in the form α0 + α1a+
α2b+α3c+α4ac+α5ba+α6bc+α7ca+α8cb+α9acb+α10bca+α11cba, αi ∈ K.
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Let fgh = 0 with f = α0 + α1a + α2b + α3c + α4ac + α5ba + α6bc + α7ca +
α8cb+α9acb+α10bca+α11cba, g = β0+β1a+β2b+β3c+β4ac+β5ba+β6bc+
β7ca+ β8cb+ β9acb+ β10bca+ β11cba, and h = γ0 + γ1a+ γ2b+ γ3c+ γ4ac+
γ5ba+γ6bc+γ7ca+γ8cb+γ9acb+γ10bca+γ11cba. Then we have the following
system of equalities:

α0β0γ0 = 0;(0)

α1β0γ0 + α0β1γ0 + α0β0γ1 = 0;(1)

α2β0γ0 + α0β2γ0 + α0β0γ2 = 0;(2)

α3β0γ0 + α0β3γ0 + α0β0γ3 = 0;(3)

α4β0γ0 + α0β4γ0 + α0β0γ4 + α1β3γ0 + α1β0γ3 + α0β1γ3 = 0;(4)

α5β0γ0 + α0β5γ0 + α0β0γ5 + α2β1γ0 + α2β0γ1 + α0β2γ1 = 0;(5)

α6β0γ0 + α0β6γ0 + α0β0γ6 + α2β3γ0 + α2β0γ3 + α0β2γ3 = 0;(6)

α7β0γ0 + α0β7γ0 + α0β0γ7 + α3β1γ0 + α3β0γ1 + α0β3γ1 = 0;(7)

α8β0γ0 + α0β8γ0 + α0β0γ8 + α3β2γ0 + α3β0γ2 + α0β3γ2 = 0;(8)

...

α11β0γ0 + α0β11γ0 + α0β0γ11 + α8β1γ0 + α8β0γ1 + α0β8γ1

+ α3β5γ0 + α3β0γ5 + α0β3γ5 + α3β2γ1 + α2β4γ0 + α2β0γ4

+ α0β2γ4 + α5β3γ0 + α5β0γ3 + α0β5γ3

+ α2β1γ3 = 0.(11)

And the center of R is {k0 + k5ba + k9acb + k10bca + k11cba | ki ∈ K}
obviously. From (0), (1), (2) and (3), fhg = k4ac+ k5ba+ k6bc+ k7ca+ k8cb+
k9acb + k10bca + k11cba where k4 = α4γ0β0 + α0γ4β0 + α0γ0β4 + α1γ3β0 +
α1γ0β3+α0γ1β3, k6 = α6γ0β0+α0γ6β0+α0γ0β6+α2γ3β0+α2γ0β3+α0γ2β3,
k7 = α7γ0β0 + α0γ7β0 + α0γ0β7 + α3γ1β0 + α3γ0β1 + α0γ3β1, k8 = α8γ0β0 +
α0γ8β0 + α0γ0β8 + α3γ2β0 + α3γ0β2 + α0γ3β2. From (0), α0 = 0 or β0 = 0 or
γ0 = 0.

Case 1. If α0 = 0, then k4 = k6 = k7 = k8 = 0 by (4), (6), (7) and (8). So
fhg ∈ Z(R).

Case 2. If α0 6= 0, β0 = γ0 = 0, then β1γ3 = β2γ3 = β3γ1 = β3γ2 = 0 by
(4), (6), (7) and (8). So k4 = k6 = k7 = k8 = 0 and hence fhg ∈ Z(R).

Case 3. If α0 6= 0, β0 6= 0 and γ0 = 0 or α0 6= 0, γ0 6= 0 and β0 = 0, then
by (0)∼ (11), h = 0 or g = 0, respectively. So fhg = 0 ∈ Z(R).

Thus R is cental right symmetric, so R is central reversible though but IFP.

Example 2.6. We refer the argument in by [5, Example 4.10]. Let K be a
field. Then R = K〈a, b | ab = 0〉 is IFP by [5, Example 4.10]. However ba = 0
and (ba)a 6= 0 = a(ba), entailing ba /∈ Z(R); hence R is not central reversible.
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Following Agayev et al. [2], a ring R is called central semicommutative if for
any a, b ∈ R, ab = 0 implies arb is a central element of R for each r ∈ R. It
is clear that every IFP ring is central semicommutative. By [2, Lemma 2.6]
central semicommutative rings are Abelian and also by [14, Proposition 2.16]
every left central symmetric ring is Abelian. In the following we prove that
central reversible rings are Abelian.

Lemma 2.7. If a ring R is central reversible, then R is Abelian.

Proof. Let e2 = e ∈ R, r ∈ R. Then we get the following computation.

e(1− e)r = 0 ⇒ (1− e)re ∈ Z(R) ⇒ 0 = e(1− e)re = (1− e)re2 = (1− e)re;

(1−e)er = 0 ⇒ er(1−e) ∈ Z(R) ⇒ 0 = (1−e)er(1−e) = er(1−e)2 = er(1−e).

Thus we get er = ere = re. So R is Abelian. �

The following example shows that Abelian rings need not be central re-
versible. This implies that the converse of Lemma 2.7 need not hold.

Example 2.8. Let Z be the ring of integers and let

R =

{(

a c
0 b

)

| a− b ≡ c ≡ 0(mod 2)

}

.

Then, by [15, Example 13], R is Abelian. Since ( 0 2
0 0 ) (

2 0
0 0 ) = 0 and ( 2 0

0 0 ) (
0 2
0 0 ) =

( 0 4
0 0 ) /∈ Z(R), R is not central reversible.

By a simple computation we can prove that central left or right symmetric
rings are central semicommutative.

Lemma 2.9. If a ring R is central right (resp., left) symmertic, then R is

central semicommutative.

Proof. First suppose that R is central right symmertic and let ab = 0 ∈ R.
Then abr = 0 implies arb ∈ Z(R) for all r ∈ R since R is central right symmer-
tic. And suppose that R is central left symmertic and let ab = 0 ∈ R. Then
rab = 0 implies arb ∈ Z(R) for all r ∈ R since R is central left symmertic. �

In Example 2.6 R is IFP but not central reversible and hence there exists
a central semicommutative ring which is not a central right (resp., left) sym-
mertic rings. But we do not answer whether central reversible rings are central
semicommutative. So we remain this note by raising the following question.

Question. Are central reversible rings central semicommutative?

We will use the following terminology and notation for adjunction of 1,
due to Dorroh [9]. If T is a ring without identity, its Dorroh extension is

T
′

= Z⊕T (as additive groups) with multiplication defined by (n1, t1)(n2, t2) =
(n1n2, t1t2 + n1t2 + n2t1). The property that T be reduced (i.e., contain no
nonzero nilpotent elements) is clearly preserved by Dorroh extensions. But,
by [18, Example 2], neither symmetric nor the IFP condition is preserved by
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Dorroh extensions. So we may suspect that if T is central right (resp., left)

symmetric, then the Dorroh extension T
′

= Z ⊕ T is central right (resp., left)
symmetric. But the following example eliminates the possibility.

Example 2.10. Let T be as in Example 2.21 In the Dorroh extension T
′

=
Z ⊕ T , we have αβγ = (1, a)(0, a)(0, a + b) = (0, 0) and αγβ = (1, a)(0, a +

b)(0, a) = (0, a+ b) /∈ Z(T
′

). Thus T
′

is not right central symmetric.

The following result is a direct consequence of simple computations.

Lemma 2.11. The classes of central reversible and central right (resp.,left)
symmetric rings are closed under subrings and direct products.

Next one may suspect that a ring R is central reversible if and only if R[x]
is cenrtal reversible. However the following example erases the possibility.

Example 2.12. We refer the argument in by [16, Example 2.1] and [12, Exam-
ple 2]. Let Z2 be the field of integers modulo 2 and A = Z2[a0, a1, a2, b0, b1, b2, c]
be the free algebra of polynomials with zero constant terms in noncommuting
indeterminates a0, a1, a2, b0, b1, b2, c over Z2. Note that A is a ring without
identity and consider an ideal of the ring Z2 +A, say I, generated by

a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2,

b0a0, b0a1 + b1a0, b0a2 + b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2,

(a0 + a1 + a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2), and r1r2r3r4r5,

where r, r1, r2, r3, r4, r5 ∈ A. Then clearly A5 ∈ I. Next let R = (Z2 + A)/I
and consider R[x] ∼= (Z2 + A)[x]/I[x]. Notice that (ca0 + ca1x + ca2x

2)(b0 +
b1x+ b2x

2) ∈ I[x], but (b0+ b1x+ b2x
2)(ca0+ ca1x+ ca2x

2) /∈ Z(R[x]) because
b0ca1 + b1ca0 is not central; hence R[x] is not central reversible.

Next we show that R is central reversible. We call each product of the
indeterminates a0, a1, a2, b0, b1, b2, c a monomial and say that α is a monomial
of degree n if it is a product of exactly n number of indeterminates. Let Hn

be the set of all linear combinations of monomials of degree n over Z2.
Now set fg ∈ I with f, g ∈ R, to see that R is central reversible. We may

write f = α+ f1+ f2+ f3+ f4+ f5, g = β+ g1+ g2+ g3+ g4+ g5 for α, β ∈ Z2,
f1, g1 ∈ H1, f2, g2 ∈ H2, f3, g3 ∈ H3, f4, g4 ∈ H4 and f5, g5 ∈ I since Hi ⊆ I for
i ≥ 5. Consider that Z(R) = {γ + h4 + h5 | γ ∈ Z2, h4 ∈ H4, h5 ∈ I} by the
definition of I. Then we obtain fg = αβ + (αg1 + f1β) + (αg2 + f1g1 + f2β) +
(αg3+ f1g2+ f2g1+ f3β)+ (αg4+ f1g3+ f2g2+ f3g1+ f4β)+h ∈ I with h ∈ I,
so α = 0 or β = 0.

Case 1. If α = β = 0, then f1g1 ∈ I and f1g2 + f2g1 ∈ I. By Claim 1
and Claim 2 of [16, Example 2.1], we get g1f1 ∈ I and g1f2 + g2f1 ∈ I. Thus
gf ∈ Z(R).

Case 2. If α = 0, β = 1 and f1 = 0, then f2 ∈ I and f2g1 + f3 ∈ I ; hence
f3 ∈ I. Thus gf ∈ Z(R).
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Case 3. If α = 1, β = 0 and g1 = 0, then g2 ∈ I and g3 + f1g2 ∈ I: hence
g3 ∈ I. Thus gf ∈ Z(R).

So gf ∈ Z(R) for each situation. Therefore R is central reversible.

For any polynomial f(x) in R[x], let Cf(x) denote the set of all coefficients of
f(x). R is called Armendariz [20, Definition 1.1] if whenever any polynomials
f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0, then ab = 0 for each a ∈ Cf(x) and
b ∈ Cg(x). Every reduced ring is Armendariz by Armendariz [6, Lemma 1].

Lemma 2.13 ([3, Proposition 1]). Suppose that R is an Armendariz ring. If

f1, . . . , fn are such that f1 · · · fn = 0, then a1 · · · an = 0 where ai is a coefficient

of fi.

Proposition 2.14. Let R be an Armendariz ring.

(1) R is central reversible if and only if R[x] is central reversible.

(2) R is central right (resp., left) symmetric if and only if R[x] is central

(resp., left) symmetric.

Proof. It suffices to show the necessity.
(1) Assume that R is central reversible. Let f(x)g(x) = 0 for f(x), g(x) ∈

R[x]. Then ab = 0 for any a ∈ Cf(x), b ∈ Cg(x). Since R is central reversible,
ba ∈ Z(R). This yields that g(x)f(x) ∈ Z(R) and thus R[x] is central re-
versible.

(2) Assume that R is central symmetric. Let f(x)g(x) = 0 for f(x), g(x),
h(x) ∈ R[x]. Then abc = 0 for any a ∈ Cf(x), b ∈ Cg(x) and c ∈ Ch(x) by
Lemma 2.13. Since R is central right(resp., left) symmetric, acb ∈ Z(R) (resp.,
bac ∈ Z(R). This yields that f(x)h(x)g(x) ∈ Z(R) (resp., g(x)f(x)h(x) = 0)
and thus R[x] is central right (resp., left) symmetric. �

This example also provides a counterexample to a conjecture that if a ring
R is central reversible, then R/I is also central reversible for any ideal I in R.
In Example 2.12, (Z2 +A)[x] is a domain so central reversible clearly, but the
factor ring (Z2 +A)[x]/I[x] ∼= R[x] is not central reversible.

Proposition 2.15. (1) Let R be a ring. Then eR and (1− e)R are central re-

versible for some central idempotent e of R if and only if R is central reversible.

(2) Let R be a ring and ∆ be a multiplicatively closed subset of R consisting

of central regular elements. Then R is central reversible if and only if ∆−1R
is central reversible.

(3) Let R be a ring. Then eR and (1 − e)R (resp., Re and R(1 − e)) are

central right (resp., left) symmetric for some central idempotent e of R if and

only if R is central right (resp., left) symmetric.

(4) Let R be a ring and ∆ be a multiplicatively closed subset of R consisting

of central regular elements. Then R is central right (resp., left) symmetric if

and only if ∆−1R (resp., R∆−1 is central right (resp., left) symmetric.

Proof. For the proofs (1), (2), (3) and (4), it suffices to show that the necessities
by Lemma 2.11.
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(1) Let ab = 0 for a, b ∈ R. Then eab = 0 and (1 − e)ab = 0. So we have
eba ∈ Z(eR) and (1− e)ba ∈ Z((1− e)R) by hypothesis. Hence, for any r ∈ R,
ebaer = ereba and (1−e)ba(1−e)r = (1−e)r(1−e)ba and so bar = rba. Thus
ba ∈ Z(R) and therefore R is central reversible.

(2) Let αβ = 0 with α = u−1a, β = v−1b, u, v ∈ ∆ and a, b ∈ R. Since ∆ is
contained in the center of R, we have 0 = αβ = (u−1a)(v−1b) = u−1v−1ab and
ab = 0. But R is central reversible by supposition, so ba ∈ Z(R) and we have
βα = (v−1b)(u−1a) = v−1u−1ba ∈ Z(∆−1R); hence ∆−1R is central reversible.

(3) Let abc = 0 for a, b, c ∈ R. Then eabc = 0 and (1 − e)abc = 0. So we
have eacb ∈ Z(eR) and (1 − e)acb ∈ Z((1 − e)R) by hypothesis. Hence, for
any r ∈ R, eacber = ereacb and (1 − e)acb(1 − e)r = (1 − e)r(1 − e)acb and
so acbr = racb. Thus acb ∈ Z(R) and therefore R is right central symmetric.
And the proof of left vision is similar to the right vision.

(4) The proof of left version by [14, Proposition 2.25]. And the proof of right
version is similar to the left version. �

The ring of Laurent polynomials in x, coefficients in a ring R, consists of
all formal sums

∑n
i=k mix

i with obvious addition and multiplication, where
mi ∈ R and k, n are (possibly negative) integers; denote it by R[x;x−1].

Lemma 2.16. For a ring R, R[x] is central reversible (resp., central right

(resp., left) symmetric) if and only if R[x;x−1] is central reversible (resp., cen-
tral right (resp., left) symmetric).

Proof. For the proof, it suffices to show the necessity by Lemma 2.11. Let
∆ = {1, x, x2, . . .} then clearly ∆ is a multiplicatively closed subset of R[x]
consisting of central regular elements. Since R[x;x−1] = ∆−1R[x], it follows
that R[x;x−1] is central reversible by Proposition 2.15(3). �

Proposition 2.17. Let R be a ring and suppose that Z(R) contains an in-

finite subring whose nonzero elements are regular in R. Then the following

statements are equivalent:
(1) R is central reversible (resp., right central symmetric).
(2) R[x] is central reversible (resp., right central symmetric).
(3) R[x;x−1] is central reversible (resp., right central symmetric).

Proof. By Lemma 2.11 and Lemma 2.16, it suffices to show (1) ⇒ (2). It is
well-known that R[x] is a subdirect product of R,s, under given conditions.
Thus R[x] is central reversible by Lemma 2.11. �

Proposition 2.18. Given an Armendariz ring R, the following conditions are

equivalent:
(1) R is central reversible;
(2) R[x] is central reversible;
(3) R[x;x−1] is central reversible.
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Proof. By Lemma 2.11 and Lemma 2.16, it suffices to show (1) ⇒ (2). Let
f =

∑m
i=0 aix

i, g =
∑n

j=0 bjx
j be the polynomials in R[x] such that fg = 0.

Then since R is Armendariz, each aibj = 0; but R is central reversible so
bjai ∈ Z(R) for all i, j. Consequently we obtain gf ∈ Z(R[x]) and R[x] is
central reversible. �

Proposition 2.19. Given an Armendariz ring R, the following conditions are

equivalent:
(1) R is central right (resp., left) symmetric;
(2) R[x] is central right (resp., left) symmetric;
(3) R[x;x−1] is central right (resp., left) symmetric.

Proof. By Lemma 2.11 and Lemma 2.16, it suffices to show (1) ⇒ (2). Let

f =
∑m

i=0 aix
i, g =

∑n
j=0 bjx

j and h =
∑l

k=0 ckx
kbe the polynomials in R[x]

such that fgh = 0. Then since R is Armendariz, each aibjck = 0; but R is
right central symmetric so aickbj ∈ Z(R) for all i, j, k. Consequently we obtain
fhg ∈ Z(R[x]) and R[x] is right central symmetric. �

A ring R is usually called (von Neumann) regular if for each a ∈ R there
exists b ∈ R such that a = aba.

Proposition 2.20. Given a regular ring R, the following conditions are equi-

valent:
(1) R is reduced;
(2) R is symmetric;
(3) R is reversible;
(4) R is IFP;
(5) R is Abelian;
(6) R is central reversible;
(7) R is central right (resp., left) symmetric.

Proof. The equivalence relation from (1) to (5) are shown by [10, Thoerem
3.2]. (3) ⇒ (6), (2) ⇒ (7) and (7) ⇒ (6) are obtained from definitions. And
(6) ⇒ (5) is true by Lemma 2.7. �

But, for rings without identity, these are no longer true, as illustrated by
the following examples.

Example 2.21. Let S = {a, b} be the semigroup with multiplication a2 =
ab = a, b2 = ba = b. Put T = F2S, which is a four-element semigroup ring
without identity. Then T is symmetric but not reversible by [18, Example
1]. Moreover Z(T ) = {0} and hence T is also right central symmetric. And
a(a+ b) = 0 but (a+ b)a = a+ b /∈ Z(T ). So T is not central reversible.

Let R be a ring and n be a positive integer. Following the literature, define

Nn(R) = {A ∈ Un(R) | each diagonal entry of A is zero}.
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Example 2.22. Let R be any ring. Nk(R) is both left and right (central)
symmetric for all k = 2, 3. For, ABC = 0 for all A, B, C ∈ Nk(R) when k = 2
or k = 3.

N4(R) is also both left and right (central) symmetric. For, ABC = αe14
(with α ∈ R) for all A, B, C ∈ N4(R), and so (ABC)D = 0 = D(ABC) for
all D ∈ N4(R).

However Nj(R) is neither left nor right central symmetric for j ≥ 5. For,
e23e12e34 = 0 and e12e34e23 = 0, but e12e23e34 = e14 is not central in Nj(R) as
can be seen by e14e45 = e15 and e45e14 = 0.

Example 2.23. Let R be any ring. Note that
(

0 0 0
0 0 1
0 0 0

)(

0 1 0
0 0 0
0 0 0

)

= 0. But we

have
(

0 1 0
0 0 0
0 0 0

)(

0 0 0
0 0 1
0 0 0

)

6= 0. So N3(R) is not reversible. But N3(R) is central

reversible, since ABC = 0 for all A, B, C ∈ N3(R).

Acknowledgments. The authors must thank the referee very much for very
careful reading of the manuscript and many valuable suggestions that improved
the paper by much. The second named author was supported by the Ba-
sic Science Research Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education(NRF-2013R1A1A4A01008
108), and the third named author was supported by Basic Science Research
Program through the National Research Foundation of Korea(NRF) funded by
the Ministry of Education(NRF-2013R1A1A2A10004687).

References

[1] N. Agayev, A. Harmanci, and S. Halicioglu, Extended Armendariz rings, Algebras
Groups Geom. 26 (2009), no. 4, 343–354.

[2] N. Agayev, T. Ozen, and A. Harmanci, On a Class of semicommutative rings, Kyung-
pook Math. J. 51 (2011), no. 3, 283–291.

[3] D. D. Anderson and V. Camillo, Armendariz rings and gaussian rings, Comm. Algebra
26 (1998), no. 7, 2265–2272.

[4] , Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999),
no. 6, 2847–2852.

[5] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8,
3128–3140.

[6] E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc.
18 (1974), 470–473.

[7] H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math.
Soc. 2 (1970), 363–368.

[8] P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641–648.
[9] J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932),

no. 2, 85–88.
[10] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
[11] J. M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32

(1990), 73–76.
[12] C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings,

Comm. Algebra 30 (2002), no. 2, 751–761.
[13] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974.



ON PROPERTIES RELATED TO REVERSIBLE RINGS 261

[14] G. Kafkas, B. Ungor, S. Halicioglu, and A. Harmanci, Generalized symmetric rings,
Algebra Discrete Math. 12 (2011), no. 2, 72–84.

[15] N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no.
2, 477–488.

[16] , Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207–
223.

[17] J. Lambek, On the representation of modules by sheaves of factor modules, Canad.
Math. Bull. 14 (1971), 359–368.

[18] G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3,
311–318.

[19] G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709–1724.
[20] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math.

Sci. 73 (1997), no. 1, 14–17.
[21] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric rings, Trans.

Amer. Math. Soc. 184 (1973), 43–60.
[22] A. A. Tuganbaev, Semidistributive Modules and Rings, Mathematics and its Applica-

tions 449, Kluwer Academic Publishers, Dordrecht, 1998.

Da Woon Jung

Department of Mathematics

Pusan National University

Pusan 609-735, Korea

E-mail address: jungdw@pusan.ac.kr

Nam Kyun Kim

College of Liberal Arts and Sciences

Hanbat National University

Daejeon 305-719, Korea

E-mail address: nkkim@hanbat.ac.kr

Yang Lee

Department of Mathematics Education

Pusan National University

Pusan 609-735, Korea

E-mail address: ylee@pusan.ac.kr

Sung Ju Ryu

Department of Mathematics

Pusan National University

Pusan 609-735, Korea

E-mail address: sjryu@pusan.ac.kr


