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CHARACTERIZING ALMOST PERFECT RINGS

BY COVERS AND ENVELOPES

László Fuchs

Dedicated to Luigi Salce on his 70th birthday

Abstract. Characterizations of almost perfect domains by certain cov-

ers and envelopes, due to Bazzoni–Salce [7] and Bazzoni [4], are gener-
alized to almost perfect commutative rings (with zero-divisors). These

rings were introduced recently by Fuchs–Salce [14], showing that the new

rings share numerous properties of the domain case. In this note, it is
proved that admitting strongly flat covers characterizes the almost per-

fect rings within the class of commutative rings (Theorem 3.7). Also, the

existence of projective dimension 1 covers characterizes the same class
of rings within the class of commutative rings admitting the cotorsion

pair (P1,D) (Theorem 4.1). Similar characterization is proved concern-

ing the existence of divisible envelopes for h-local rings in the same class
(Theorem 5.3). In addition, Bazzoni’s characterization via direct sums of

weak-injective modules [4] is extended to all commutative rings (Theorem

6.4). Several ideas of the proofs known for integral domains are adapted
to rings with zero-divisors.

1. Introduction

Almost perfect domains were defined by Bazzoni–Salce [8] as integral do-
mains R such that R/I is a perfect ring (in the sense of Bass [3]) for every
ideal I 6= 0 of R. These domains have attracted much attention, they have
been investigated extensively, and it was shown that they can be characterized
in various ways, both ring- and module-theoretically (see [4], [8]).

The theory of almost perfect domains has been extended to a class of rings
with divisors of zero by Fuchs–Salce [14]. By definition, a commutative ring R
is almost perfect if
• R is an order in a perfect ring Q; and
• R/Rr is a perfect ring for each non-zero-divisor r ∈ R (equivalently, R/I

is perfect for every ideal I containing such an r).
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It was shown in [14] that several characterizations of almost perfect domains
carry over practically without change to almost perfect rings. (For the ex-
tension of results in [14] to the non-commutative case, see Facchini–Nazemian
[11].) However, characterizations by covers and envelopes have not as yet been
discussed for these rings, so it is natural to raise the question whether or not
these too extend to almost perfect rings. In this note, we wish to give an
affirmative answer to this question.

In the case of strongly flat covers, most of the old techniques (developed
by Bazzoni–Salce [8]) could be applied mutatis mutandis, combined with some
additional arguments needed (Theorems 3.7). As pointed out by Silvana Baz-
zoni, a characterization in terms of projective dimension 1 covers can be derived
from recent results by Angeleri Hügel–Šaroch–Trlifaj [2], requiring more sophis-
ticated machinery; see Theorem 4.1. Since covers and envelopes are primarily
investigated for cotorsion pairs, in dealing with projective dimension 1 covers
and divisible envelopes we will assume to start with that (P1,D) consisting of
the corresponding classes is a cotorsion pair. This pair is known to be a co-
torsion pair for all integral domains (see Bazzoni–Herbera [6]) (but for general
rings all what can be asserted is that the kernels of covers and the cokernels of
envelopes belong to the orthogonal classes; cf. Wakamatsu Lemma, [15, Lemma
2.1.13]). For the existence of divisible envelopes we have succeeded in settling
the problem only for h-local rings (Theorem 5.3).

In the final section, another major characterization of almost perfect do-
mains, due to Bazzoni [4], is extended to rings with zero-divisors. It is shown
that the almost perfect rings are distinguished by the property that the class
of weak-injective modules is closed under the formation of (countable) direct
sums.

Since the noetherian almost perfect rings are nothing else than one-dimen-
sional Cohen-Macaulay rings [14, Theorem 5.8], our results provide character-
izations of such Cohen-Macaulay rings as well.

2. Preliminaries

In this note, we consider only commutative rings R with identity. Q always
denotes the classical ring of quotients of R, and K the factor module Q/R.
r ∈ R is called regular if it is a non-zero-divisor. The symbol R× will stand for
the set (monoid) of regular elements of R. An ideal is regular if it contains a
regular element. R-Mod will denote the class of R-modules.

An R-module T is a torsion module if every x ∈ T is annihilated by a
suitable r ∈ R×. A module is torsion-free if it does not contain such an x 6= 0.
D is called divisible if rD = D for each r ∈ R×, i.e., Ext1

R(R/Rr,D) = 0 if
r ∈ R×. A module H is h-divisible if every homomorphism R→ H extends to
a homomorphism Q→ H; equivalently, H is an epic image of some direct sum
⊕Q. The h-divisible torsion-free R-modules are precisely the Q-modules. An
R-module M is said to be weak-injective if Ext1

R(A,M) = 0 for all R-modules



CHARACTERIZING ALMOST PERFECT RINGS 133

A with w.d.A ≤ 1 (Lee [16]). (The notations p.d. and w.d. will be used for the
projective, resp. for the weak (flat) dimension.) h-reduced means no divisible
submodule 6= 0.

For a class C of R-modules, define

C⊥ = {M ∈ R−Mod | Ext1
R(C,M) = 0 ∀C ∈ C},

⊥C = {M ∈ R−Mod | Ext1
R(M,C) = 0 ∀C ∈ C}.

A pair (A,B) of R-module classes is said to be a cotorsion pair if both A =⊥ B
and B = A⊥ hold. If (A,B) is a cotorsion pair, then by an A-precover of an R-
module M is meant a module A ∈ A along with a homomorphism α : A→M
such that every homomorphism A′ → M from any A′ ∈ A factors through
α. An A-precover A is an A-cover if it is minimal in the sense that every
endomorphism η of A satisfying αη = α is an automorphism. B-(pre)envelopes
are defined dually. A cotorsion pair (A,B) of R-modules is perfect if R-modules
admit both A-covers and B-envelopes.

The symbol P1 denotes the class of R-modules of p.d.≤ 1, and F1 the class
of modules of w.d.≤ 1. D is the class of divisible, HD is the class of h-divisible,
and WI is the class of weak-injective modules. We have WI ⊆ HD ⊆ D, the
inclusions are in general proper. The pair (F1,WI) is a perfect cotorsion pair
over every (associative) ring (see Göbel–Trlifaj [15]); so it admits envelopes and
covers. The pair (P1,D) is known to be a cotorsion pair over integral domains,
but only P1 =⊥ HD holds over all commutative rings; for details, we refer to
the paper Bazzoni–Herbera [6].

In [13], a commutative ring R with p.d.Q ≤ 1 was named a Matlis ring.
Observe that R is a Matlis ring if and only if it satisfies one of the following
equivalent properties:
• divisible R-modules are h-divisible;
• Ext1

R(Q,D) = 0 for all divisible R-modules D;
• a divisible torsion R-module has p.d.≤ 1 if and only if it is a summand

of a direct sum of copies of K = Q/R.
By an h-local ring we mean a ring R for which the module K decomposes

into the direct sum of its localizations:

K = ⊕PKP ,

where P ranges over the set of regular maximal ideals P of R.
The classMC of Matlis-cotorsion modules is defined to consist of modules M

satisfying Ext1
R(Q,M) = 0. An R-module S is strongly flat if Ext1

R(S,M) = 0
holds for all Matlis-cotorsion M (Bazzoni–Salce [8]). Strongly flat modules are
flat. (SF ,MC) is a cotorsion pair, where SF denotes the class strongly flat
modules.

Proposition 2.1. Over any commutative ring, the class SF consists of sum-
mands of modules N that fit into an exact sequence of the form

0→ F → N → G→ 0,
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where F is free and G is a direct sum ⊕Q. A divisible strongly flat module is
therefore a summand of a direct sum of copies of Q.

Proof. Göbel–Trlifaj [15, Corollary 3.2.3] establishes the existence of such an
exact sequence with a free module F and a {Q}-filtered module G. Using the
simple fact that Ext1

R(Q,D) = 0 holds for all torsion-free divisible module D
over any commutative ring [13, Lemma 3.8], we argue that in this case Q splits
off any such filtered module, and hence ‘filtered’ may be replaced by ‘direct
sum.’ �

Perfect rings can be defined in different ways; as their definition we shall use
the property that their modules admit projective covers; see Bass [3]. They
admit various other characterizations, e.g. that flat modules are projective, or
that the descending chain condition holds for principal ideals. A commutative
ring is perfect if and only if it is the direct sum of a finite number of local
rings, each with T -nilpotent maximal ideal. (T -nilpotent means that for every
sequence a0, . . . , an, . . . in the ideal there is an indexm such that a0 · · · am = 0.)

A ring R will be called subperfect if its ring of quotients Q is a perfect ring
(i.e., it is an order in a perfect ring). E.g., integral domains, Cohen-Macaulay
rings are subperfect. The nilradical of a subperfect ring is T -nilpotent. Recall:
an almost perfect ring R is a subperfect ring such that R/Rr is a perfect ring
for every r ∈ R×. Some key properties of almost perfect rings are listed next.

Proposition 2.2. (Fuchs–Salce [14, part of Theorem 6.1]) Suppose R is a
subperfect ring. Then the following conditions are equivalent:

(i) R is an almost perfect ring;
(ii) R-modules of w.d.≤ 1 are of p.d.≤ 1;
(iii) (P1,D) is a cotorsion pair and equals (F1,WI);
(iv) divisible (h-divisible) R-modules are weak-injective;
(v) flat R-modules are strongly flat.

For more on almost perfect rings, for their structure, and for their relation to
almost perfect domains, we refer to [14], where also a great variety of examples
is exhibited. For unexplained terminology and basic facts on cotorsion pairs,
envelopes, covers, etc. we refer to Göbel–Trlifaj [15] and Enochs–Jenda [10].

3. Strongly flat covers

In our search for rings with covers or envelopes, we first treat the case of
rings R over which the modules admit strongly flat covers — this was the
deciding property that led Bazzoni and Salce to the discovery of almost perfect
domains.

We will be working with SF-cover sequences. Recall that an exact sequence

(1) 0→ C → S
φ−→M → 0
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is an SF-cover sequence for an R-module M if and only if S is strongly flat, C
is Matlis-cotorsion (often conveniently viewed as a submodule of S), and every
endomorphism ρ of S satisfying φ = φρ is an automorphism.

We now turn to the proofs of preliminary lemmas.

Lemma 3.1. If the divisible modules over a ring R admit strongly flat covers,
then R is a Matlis ring.

Proof. Let (1) be an SF-cover sequence for a divisible module M . First we
show that the strongly flat module S is divisible. As M is divisible, for every
r ∈ R× we have rS + C = S. From the exact sequence 0 → rS ∩ C →
C → S/rS → 0 we conclude that rS ∩ C is Matlis-cotorsion (use the functor
Hom(Q,−)). Therefore, there exists a map α : S → rS making the upper
squares commute in the following diagram:

0 −−−−→ C −−−−→ S
φ−−−−→ M −−−−→ 0y yα ∥∥∥

0 −−−−→ rS ∩ C −−−−→ rS
φ�rS−−−−→ M −−−−→ 0y β

y ∥∥∥
0 −−−−→ C −−−−→ S

φ−−−−→ M −−−−→ 0.

With the embedding map β : rS → S, the lower squares commute. The
diagram shows that φ = φβα, whence by the cover property of S it follows
that βα is an automorphism of S. Consequently, β is surjective, and rS = S,
as claimed.

Thus the strongly flat module S is divisible, hence also h-divisible by Propo-
sition 2.1. We conclude that the divisible module M is h-divisible. If every
divisible R-module is h-divisible, then R is a Matlis ring (cf. Fuchs–Lee [13,
Theorem 6.4]). �

Lemma 3.2. For any ring R, if the torsion-free divisible R-modules admit
strongly flat covers, then the ring of quotients Q of R is a perfect ring.

Proof. Let M be a Q-module, viewed as a torsion-free divisible R-module, and
let (1) be an SF-cover sequence for M . By the proof of Lemma 3.1, S is
divisible, thus S as a divisible strongly flat module is a summand of a direct
sum of copies of Q (Proposition 2.1), i.e., S is projective as a Q-module. The
module C is also a Q-module (the rest of the exact sequence does not change if
tensored by Q). Therefore, the given exact sequence may be treated as one in
Q-Mod, where it is a Q-projective resolution of M . By the choice of the above
exact sequence, it must be a cover sequence for such a resolution. We conclude
that Q-modules admit projective covers, and consequently, Q is a perfect ring
(Bass [3]). �
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We will also need the following lemmas. In what follows, M̃ will denote
the completion of M in the R×-topology (the completion is Hausdorff, so the

kernel of the canonical homomorphism M → M̃ is the divisible submodule of
M). For the exchange property of modules with local endomorphism rings, see
e.g. Warfield [17].

Lemma 3.3. Let R be a local Matlis ring with regular maximal ideal. Then

the endomorphism ring EndRK ∼= R̃ is a local ring, so the module K enjoys
the exchange property.

Proof. From the exact sequence 0 → R → Q → K → 0 (where K 6= 0 since
the maximal ideal is regular) we derive the exactness of the sequence

0→ HomR(K,K)→ Ext1
R(K,R)→ Ext1

R(K,Q) = 0.

Furthermore, we form the exact sequence 0→ D → R → R/D → 0 (where D
denotes the divisible part of R), inducing the exact sequence

Ext1
R(K,D)→ Ext1

R(K,R)→ Ext1
R(K,R/D)→ 0;

here the first Ext vanishes as p.d.K = 1 (R is Matlis) and D is divisible. Hence
we conclude that EndRK ∼= Ext1

R(K,R/D), where the last Ext is known to be

the completion R̃0 of the h-reduced module R0 = R/D. This completion is a

local ring, it is the same as R̃. �

Lemma 3.4. Let R be again a local Matlis ring with regular maximal ideal. A
strongly flat Matlis-cotorsion R-module M embeds in an exact sequence

(2) 0→ B →M → F̃ → 0,

where B is torsion-free divisible and F̃ is the completion of a free R-module F .

Proof. As a strongly flat module, M is a summand of a module N that fits
into an exact sequence 0→ H → N → G→ 0 where H is a free module and G
is a direct sum ⊕Q. Tensoring with K, we obtain H ⊗RK ∼= N ⊗RK, whence
we conclude that M ⊗R K is isomorphic to a summand of H ⊗R K ∼= ⊕K.
Referring to Lemma 3.3, we argue that M ⊗R K is also a direct sum of copies
of K. It follows that the h-reduced part M ′ = M/B of the Matlis-cotorsion M
(M ′ is likewise Matlis-cotorsion) satisfies

M ′ ∼= HomR(K,M ⊗R K) ∼= HomR(K,⊕K) ∼= (̃⊕R)

(for the first isomorphism we have applied the Matlis category equivalence over
R, see e.g. [13, Theorem 5.1]). This establishes the claim. �

The following arguments are borrowed from Bazzoni–Salce [7], with an extra
consideration of rings with divisors of zero, up to reaching the conclusion that
flat modules are strongly flat. Once this is done, we can then finish the proof
by simply quoting [14, Theorem 6.1], a major theorem on almost perfect rings
(see Proposition 2.2).
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Lemma 3.5. Let R be any commutative ring, and suppose 0 → C → S →
M → 0 is an SF-cover sequence for an R-module M . Then

C ≤ PS for every maximal ideal P of R.

Proof. By way of contradiction, assume C 6≤ PS for some P . Then necessarily
PS < S, and we can find a proper submodule A < S containing PS such
that C + A = S. The submodule A ∩ C is Matlis-cotorsion, since in the exact
sequence 0 → A ∩ C → C → S/A → 0, C is such and S/A is semisimple (use
the functor Hom(Q,−)). If we argue as in the first part of the proof of Lemma
3.1 with rS replaced by A, then we are led to the contradiction A = S. �

Lemma 3.6. Suppose R is a subperfect Matlis ring. If every flat R-module
admits a strongly flat cover, then every flat R-module is strongly flat.

Proof. By hypothesis, there exists an SF-cover sequence 0→ C → S →M →
0 for the flat module M . Owing to Lemma 3.5, C ≤ PS holds for all maximal
ideals P of R. Now C is pure in S (since M is flat), so we have PC = C∩PS =
C for all P . Evidently, C is also flat, so by assumption it embeds in an SF-
cover sequence 0 → C ′ → S′ → C → 0. Here C ′, C, and hence also S′, are
Matlis-cotorsion. By Proposition 2.1, S′ is a summand of an extension N of a
free R-module by a direct sum ⊕Q. As before, it follows that PC ′ = C ′ ≤ PS′
for all P . Clearly, from PC = C,PC ′ = C ′ we obtain PS′ = S′ for all P .

We claim that PS′ = S′ for all maximal ideals P implies that our strongly
flat Matlis-cotorsion module S′ is divisible. It suffices to verify this for local
rings R (localizations of subperfect Matlis rings are subperfect Matlis).

First we deal with the case when the maximal ideal P is regular. We now
have N = S′⊕S′′ for a suitable module S′′, and a similar decomposition holds
for the divisible hulls (modules tensored by Q): H = D′ ⊕ D′′. Evidently,
H/N ∼= D′/S′ ⊕ D′′/S′′ is a direct sum of copies of the indecomposable K.
As R is local Matlis, Lemma 3.3 implies that D′/S′ is likewise a direct sum of
copies of K. To show that S′ = D′, we refer to the exact sequence (2) which in
the present situation takes the form 0 → B → S′ → S′/B → 0 (with divisible
B and completion S′/B of a free module). Since PS′ = S′ and PB = B,
we must have also P (S′/B) = S′/B. As S′/B is the completion of a free
R-module, P (S′/B) = S′/B must be 0, i.e., S′ is divisible.

If the maximal ideal P of the local R is not regular, then P is at the same
time a minimal prime in R. The ring R is subperfect, so its nilradical P is T -
nilpotent. This means that R is a perfect ring. Over a perfect ring all modules
are divisible, thus S′ is divisible in this case as well. This completes the proof
of the divisibility of S′.

Consequently, in the given exact sequence, C is likewise a Q-module. As
Q is a perfect ring, by [14, Theorem 6.5] Q-modules are weak-injective as R-
modules. Hence it follows that the above SF-cover sequence for M splits, and
M is strongly flat. �

We have all the ingredients to be able to verify:
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Theorem 3.7. The modules over a commutative ring R admit strongly flat
covers if and only if R is almost perfect.

Proof. One way the claim follows immediately from Proposition 2.2: over an
almost perfect ring, strongly flat modules are the same as flat modules, and the
existence of flat covers (see Bican–El Bashir–Enochs [9]) completes the proof
of sufficiency.

Conversely, assume R-modules admit SF-covers. By Lemma 3.1, R is a
Matlis ring, and by Lemma 3.2, it is also subperfect. A reference to Lemma 3.6
shows that all flat R-modules are strongly flat. It remains to appeal to Propo-
sition 2.2 to conclude that R is almost perfect. �

The following corollary is immediate.

Corollary 3.8. (Bazzoni–Salce [7]) An integral domain admits strongly flat
covers if and only if it is an almost perfect domain.

Considering that a noetherian almost perfect ring is the same as a one-
dimensional Cohen-Macaulay ring, we can also state:

Corollary 3.9. The modules over a commutative noetherian ring admit strong-
ly flat covers if and only if the ring is one-dimensional Cohen-Macaulay.

4. P1-covers

Next we turn our attention to those rings over which the modules admit
P1-covers. It makes sense to deal with this problem under the assumption that
(P1,D) is a cotorsion pair. This hypothesis has a powerful consequence: recall
Fuchs [12, Theorem 6.5] (it also follows from Bazzoni–Herbera [6, Theorem
6.3]) which shows that if (P1,D) is a cotorsion pair in R-Mod, then the finitistic
dimension Fdim(Q) = 0, i.e., in the category of Q-modules, all modules of finite
p.d. are projective; consequently, Q is a perfect ring. Thus R is a subperfect
ring.

I am indebted to Silvana Bazzoni for pointing out that from a recent result
by Angeleri Hügel–Šaroch–Trlifaj [2] one can easily derive a characterization
of rings whose modules admit P1-covers. In view of this, our original weaker
theorem can be replaced by the following much stronger result:

Theorem 4.1. Suppose R is a commutative ring such that (P1,D) is a cotor-
sion pair. The R-modules admit P1-covers if and only if R is an almost perfect
ring.

Proof. In [2, Theorem 5.2] it is shown that, over any ring R, if in a cotorsion
pair (A,B) the class B is closed under direct limits, then the R-modules admit
A-covers if and only if also the class A is closed under direct limits. Since
the class D is closed under direct limits, this theorem applies to the cotorsion
pair (P1,D). As for subperfect rings F1 is precisely the class of direct limits of
modules in class P1, it follows that over a ring with (P1,D) as cotorsion pair,
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P1-covers exist exactly if P1 = F1. This equality is satisfied by the module
classes of a subperfect ring if and only if the ring is almost perfect [14, Theorem
6.1]. �

As far as the hypothesis of (P1,D) being a cotorsion pair over R is con-
cerned, note that this is equivalent to having Fdim(Q) = 0 plus the existence
of filtrations for every module in P1 with countably presented factors in P1

(e.g. [12, Theorem 6.5]).
I wish to thank the referee for pointing out to me that, in view of Bazzoni–

Herbera [6, Corollary 8.4], if R is a commutative noetherian ring, then the class
D of divisible modules is equal to B⊥ for a specific subclass B of P1; and hence
it follows that in this situation (P1,D) is a cotorsion pair. Consequently, in the
noetherian case we can draw the following corollary to Theorem 4.1:

Corollary 4.2. Modules over a noetherian ring admit P1-covers if and only if
the ring is one-dimensional Cohen-Macaulay.

5. Divisible envelopes

Our next objective is to characterize the rings whose modules admit D-
envelopes. Again, to start with, we assume that (P1,D) is a genuine cotorsion
pair for R-modules. As pointed out in Section 4, if (P1,D) is a cotorsion pair
of R-modules, then R has to be a subperfect ring.

We begin with a lemma allowing us to restrict our search to Matlis rings.
For a more general version of this lemma, see Angeleri Hügel–Herbera–Trlifaj
[1, Theorem 1.1].

Lemma 5.1. If (P1,D) is a cotorsion pair and the module RR has a D-
envelope, then R is a Matlis ring, and Q is the D-envelope of R.

Proof. Consider the diagram

D

0 R D D/R 0

ṙ
γ

δ

with a D-envelope sequence for R. As ṙ (multiplication by r ∈ R×) is a
surjective map on D, there exists a map γ : R → D such that ṙγ = δ. The
envelope property of D implies the existence of a map φ : D → D satisfying
φδ = γ. Thus ṙφδ = ṙγ = δ, and referring again to the envelope property,
it follows that ṙφ is an automorphism of D. This can happen only if ṙ is an
automorphism (as φD is divisible, it must be all of D whenever ṙφD = D;
and that ṙ must be monic is clear from the automorphism ṙφ). Hence D is
torsion-free. As p.d.D/R ≤ 1, we have p.d.D = 1.

In view of the envelope property, for the embedding R → Q, there exists
a map ψ : D → Q that extends the identity map of R. As Imψ is divisible
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and Q is a minimal divisible module containing R, ψ is surjective. Kerψ is
likewise a Q-module (pure in D, hence divisible), so D ∼= Kerψ⊕Q. Therefore
p.d.Q = 1, and R is a Matlis ring. It also follows that D = Q. �

The rest of the proof is an application Bazzoni’s techniques [4].

Lemma 5.2. Suppose (P1,D) is a cotorsion pair and the modules over the
local Matlis ring R with regular maximal ideal P admit D-envelopes. Then for
every r ∈ R×, the factor ring R/Rr is perfect.

Proof. Let r ∈ R× be a non-unit, and consider the exact sequence

(3) 0→ Rr−1/R→ Q/R→ Q/Rr−1 → 0

which is clearly a special D-preenvelope sequence for Rr−1/R over the Matlis
ring R. As Q/Rr−1 ∼= K is indecomposable for a local R, and by hypothesis
Rr−1/R has an envelope, (3) must be a D-envelope sequence for Rr−1/R.

In order to prove that the ring R/Rr is perfect, we show that its maximal
ideal P/Rr is T -nilpotent. Since for a sequence of tn ∈ P \Rr (n < ω), the D-
envelope of ⊕n<ωRt−1

n /R is the direct sum of the D-envelopes of the Rt−1
n /R,

i.e., ⊕n<ωQ/R, we can appeal to a theorem by Enochs–Jenda [10, Proposition
6.4.1] on the envelope of a direct sum that is isomorphic to the direct sum of the
envelopes of the summands. It claims that then for every countable sequence
ηn : Q/R → Q/R (n < ω) of homomorphisms satisfying ηn(Rt−1

n /R) = 0 and
for each q ∈ Q/R, there exists an index m ≥ 1 such that ηmηm−1 · · · η0(q) = 0.

Let q = r−1 + R ∈ Q/R with any non-unit r ∈ R×. Multiplication by tn is
an endomorphism in Q/R that annihilates Rt−1

n /R, so there is an index m ≥ 1
such that

tmtm−1 · · · t0(r−1 +R) = 0.

This is equivalent to saying that tmtm−1 · · · t0 ∈ Rr, establishing the T -nil-
potency of P/Rr. �

We are able to verify the following theorem only for h-local rings (we have
failed to show the h-local property in the global case).

Theorem 5.3. Suppose R is an h-local commutative ring with the cotorsion
pair (P1,D). R-modules admit divisible envelopes if and only if R is almost
perfect.

Proof. If R is almost perfect, then divisibility is tantamount to weak-injectivity,
and weak-injective envelopes exist for all rings.

Conversely, it suffices to deal with local rings R. Assume the existence of
D-envelopes for R-modules. Lemma 5.1 implies that R is a Matlis ring, thus R
is a subperfect Matlis ring. If the maximal ideal P of R is not regular, then all
regular elements of R are units, so R is trivially almost perfect. On the other
hand, if P is regular, then by Lemma 5.2, R/Rr is a perfect ring for every
non-unit r ∈ R×, and so R is almost perfect. �
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In the noetherian case, we do not need the hypothesis that (P1,D) is a
cotorsion pair (just as in Corollary 4.2), so we can state:

Corollary 5.4. The modules over a commutative h-local noetherian ring admit
divisible envelopes if and only if the ring is one-dimensional Cohen-Macaulay.

6. Direct sums of weak-injectives

There is one more important characterization of almost perfect domains, due
to Bazzoni. She proved that an integral domain is almost perfect if and only if
direct sums of weak-injective modules are again weak-injective (see [4, Theorem
5.7]). We are looking for an analogous characterization of almost perfect rings.

For the next proof, it should be borne in mind that (F1,WI) is a perfect
cotorsion pair. Furthermore, if the class of weak-injective modules is closed
under direct sums, then the WI-envelope of a direct sum is the direct sum of
the WI-envelopes of the summands.

Lemma 6.1. For any commutative ring R, if countable direct sums of the
WI-envelopes of cyclic torsion R-modules are again weak-injective, then R is
a subperfect ring.

Proof. It suffices to show that if R is as stated, then the principal ideals of its
quotient ring Q satisfy the descending chain condition (Bass [3]). Let

(4) Qt0 > Qt1 > · · · > Qtn > · · ·
be a strictly descending chain where we may assume without loss of generality
that tn ∈ R, since multiplication (or division) of a generator by a non-zero-
divisor in R does not change a principal ideal of Q. We may write tn =
sntn−1 (n ≥ 1) for some sn ∈ R; and let s0 = t0. Form the WI-envelopes Un
of the cyclic modules Cn = R/Rtn (n < ω). By the well-known Wakamatsu
Lemma ([15, Lemma 2.1.13]) we then have Un/Cn ∈ F1 for each n. This makes
it possible to define maps

φn : Un → Un+1 (n < ω)

between these weak-injective modules (though not uniquely) as extensions of
the correspondences

φn : 1 +Rtn 7→ sn+1 +Rtn+1 (n < ω).

Consider the modules Vn = Un/Rsn (n < ω) along with the maps φ̄n : Vn →
Vn+1 induced by the φn; thus

φ̄n(1 +Rsn) = sn+1 +Rsn+1 = 0.

Clearly, the module Vn is a special WI-preenvelope of the cyclic module
R/Rsn. Evidently, theWI-envelope of this cyclic module must be a summand
V ′n of Vn. It is easily seen that the maps φ̄n induce maps φ̄′n between these
envelope summands such that R/Rsn is in the kernel of the map φ̄′n. Knowing
that⊕n<ωV ′n is theWI-envelope of⊕n<ωR/Rsn, and for each n, φ̄′n annihilates
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R/Rsn, we are able to appeal again to [9, Proposition 6.4.1] on a direct sum
of envelopes that is also an envelope. Hence we can conclude that for every
x ∈ V ′0 there is an index m ≥ 1 such that φ̄′m · · · φ̄′0(x) = 0 ∈ V ′m+1. Choosing
x = r−1 + Rs0 with a non-unit r ∈ R×, a close scrutiny of the actions of the
maps yields

tmr
−1 = sm · · · s0(r−1) = qtm+1

for some q ∈ Q. This means tm ∈ Qtm+1, so the strictly descending chain (4)
of the ideals Qtn terminates at m. �

The proof of Theorem 6.4 relies on the following general result.

Proposition 6.2. (Bazzoni–Herbera [5, Theorem 2.5]) Let N be a countably
presented R-module, and C a class of R-modules such that C ∈ C implies that
the countable direct sum C(ℵ0) ∈ C. If

Ext1
R(N,C) = 0 for all C ∈ C,

then Ext1
R(N,D) = 0 also for every pure submodule D of any C ∈ C.

For the proof of the next lemma, we have to recall that over subperfect rings,
a divisible submodule with cokernel of w.d.≤ 1 is necessarily a pure submodule.
This is a simple consequence of [12, Theorem 4.1]. Hence every divisible module
is pure in its weak-injective envelope.

Lemma 6.3. Let R be a subperfect ring such that countable direct sums of
copies of any weak-injective module are also weak-injective. Then every count-
ably presented R-module of w.d.≤ 1 has p.d.≤ 1.

Proof. Choose a countably presented R-module N of w.d.≤ 1. Then assuming
that a countable direct sum of copies of any C ∈ WI is weak-injective, the
hypotheses of Proposition 6.2 are satisfied for these N andWI, so we can con-
clude that Ext1

R(N,D) = 0 holds for all pure submodules D of weak-injectives,
and hence for all divisible R-modules D (see the remark before this lemma).
Then from the fact that P1 =⊥ HD we can deduce that p.d.N ≤ 1. �

We are now prepared to finish the proof of:

Theorem 6.4. Let R be a commutative ring. The class of weak-injective R-
modules is closed under (countable) direct sums if and only if R is an almost
perfect ring.

Proof. Over almost perfect rings, direct sums of weak-injective modules are
again weak-injective — this follows at once from the equality of divisible and
weak-injective modules over almost perfect rings; see Proposition 2.2.

To verify the ‘if’ part, observe that any ring R satisfying the stated condition
is a subperfect ring, as proved in Lemma 6.1. We show that the ring R̄ = R/Rr
is perfect for all non-units r ∈ R× by proving that every countably presented
flat R̄-module N is projective. As a countably presented flat module, N is
the direct limit over a countable index set of projective R̄-modules. Projective
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R̄-modules are of p.d. 1 as R-modules, hence we derive that w.d.RN ≤ 1. N is
evidently countably presented also as an R-module, so Proposition 6.2 applies
to N and the class C of weak-injectives. Hence N satisfies the hypothesis of
Lemma 6.3, so we obtain p.d.RN = 1 (the case 0 is obviously ruled out). By a
well-known Kaplansky formula on projective dimensions, N satisfies

p.d.RN = p.d.R̄N + 1.

Consequently, N is projective as an R̄-module, and R̄ is a perfect ring. �

Corollary 6.5. A commutative noetherian ring has the property that countable
direct sums of weak-injective modules are again weak-injective if and only if it
is a one-dimensional Cohen-Macaulay ring (in which case all divisible modules
are weak-injective).
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