• Title/Summary/Keyword: yeast biomass

Search Result 143, Processing Time 0.034 seconds

Mitigation of Methane Emission and Energy Recycling in Animal Agricultural Systems

  • Takahashi, J.;Mwenya, B.;Santoso, B.;Sar, C.;Umetsu, K.;Kishimoto, T.;Nishizaki, K.;Kimura, K.;Hamamoto, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1199-1208
    • /
    • 2005
  • Abatement of greenhouse gas emitted from ruminants and promotion of biogas energy from animal effluent were comprehensively examined in each anaerobic fermentation reactor and animal experiments. Moreover, the energy conversion efficiency of biomass energy to power generation were evaluated with a gas engine generator or proton exchange membrane fuel cell (PEMFC). To mitigate safely rumen methanogenesis with nutritional manipulation the suppressing effects of some strains of lactic acid bacteria and yeast, bacteriocin, $\beta$1-4 galactooligosaccharide, plant extracts (Yucca schidigera and Quillaja saponarea), L-cysteine and/or nitrate on rumen methane emission were compared with antibiotics. For in vitro trials, cumulative methane production was evaluated using the continuous fermented gas qualification system inoculated with the strained rumen fluid from rumen fistulated Holstein cows. For in vivo, four sequential ventilated head cages equipped with a fully automated gas analyzing system were used to examine the manipulating effects of $\beta$1-4 galactooligosaccharide, lactic acid bacteria (Leuconostoc mesenteroides subsp. mesenteroides), yeast (Trichosporon serticeum), nisin and Yucca schidigera and/or nitrate on rumen methanogenesis. Furthermore, biogas energy recycled from animal effluent was evaluated with anaerobic bioreactors. Utilization of recycled energy as fuel for a co-generator and fuel cell was tested in the thermophilic biogas plant system. From the results of in vitro and in vivo trials, nitrate was shown to be a strong methane suppressor, although nitrate per se is hazardous. L-cysteine could remove this risk. $\beta$1-4 galactooligosaccharide, Candida kefyr, nisin, Yucca schidigera and Quillaja saponarea are thought to possibly control methanogenesis in the rumen. It is possible to simulate the available energy recycled through animal effluent from feed energy resources by making total energy balance sheets of the process from feed energy to recycled energy.

Production of Single Cell Protein on Petroleum Hydrocarbon -IV. On the Continuous Fermentation and Some Cultivation Conditions for Candida tropicalis KIST 351- (석유탄화수소를 이용한 단세포단백질의 생산에 관한 연구 -IV. Candida tropicalis KIST 351의 연속배양 및 몇가지 조건에 관하여-)

  • Lee, Yong-Hyun;Pyun, Yoo-Ryang;Kwon, Tai-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.200-205
    • /
    • 1972
  • Effects of several different petroleum fractions (LGO, HGO, VGO, Diesel oil, SP(E), HGO-wax, L/M-wax), stepwise addition of calculated amounts of HGO at defined intervals, recycling of spent media on cell growth of Candida tropicalis KIST 351 were studied using $2.5{\ell}$ fermenter by batch process. In addition, continuous cultivation of the yeast was also performed in the light of biomass production using $28{\ell}$ fermenter with LGO. 1) Cell concentration, yield on the basis of gas oil and n-paraffin with the petroleum fractions were in the range of $11{\sim}15g/{\ell}$, $10{\sim}12%$ and $77{\sim}82%$, respectively. 2) By stepwise addition of the gas oil, cell concentration and yield on the oil were increased up to 18.9 g/land 13%, respectively. 3) Spent medium slowed emulsifying ability of hydrocarbon and stimulating effect on the cell growth. Without additional supplementation of $Mg^{++}$ up to 20% of spent medium could be reused, while by adding of the $Mg^{++}$, 50% of medium could be recycled. 4) Optimum condition of continuous cultivation for biomass production was attained at the dilution rate of $D=0.1{\sim}0.125\;hr^{-1}$. Maximum yield coefficient on consumed n-paraffin was 0.94 at $D=0.1\;hr^{-1}$, however, 24% of supplied n-paraffin in the media was not utilized at this dilution rate.

  • PDF

Production of Bioactive Compounds from Fungi Grown on Ginseng-Steaming Effluent (인삼 유출액에서 생육한 곰팡이로부터 생리 활성 물질의 생산)

  • Jang, Jeong-Hoon;Kim, Jae-Ho;Kim, Na-Mi;Kim, Ha-Kun;Lee, Jong-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • We described production of bioactive compounds from fungi grown on Korean ginseng-steaming effluents (GSE) for develop high-value added nutraceuticals from Korean GSE. Hansenula anomala KCCM 11473, which grew well in Korean GSE had high RNA content, and its optimal autolysis conditions were established to produce 5'-ribonucleotides (13.9~28.5 mg/g of biomass) at $55^{\circ}C$ and pH 5.0 for 24 h. 5'-Phosphodiesterase and adenyl deaminase were not effective in increasing the yield of 5'-ribinucleatides, but the yield of IMP increased significantly only after the addition of 1.0% adenyl deaminase. Saccharomyces cerevisiae showed the highest growth in the GSE medium. 267.1 mg of S. cerevisiae biomass was produced from 1 g of GSE solid and medicinal ginsenoside-$Rg_3$ contents was determined with 0.033 mg. Mucor miehei KCTC 6011 produced approximately 120 mg of chitosan per g-dry mycelium in 84 h at $25^{\circ}C$ when grown in the GSE (pH 8.0) supplemented with 0.5% yeast extract and 0.002% $CuSO_4$. Chitosan produced by M. miehei KCTC 6011 have deacetylated approximately 56% and its viscosity and molecular weight of the chitosan were 80 cps and $1.07\times10^3$ kDa, respectively. The chitosan at 1.5 mg/ml inhibited 73.9% of the mycelium growth of Rhizotonia solani in 60 h.

Bioethanol Production from Popping Pretreated Switchgrass (팝핑전처리한 스위치그라스로부터 바이오에탄올 생산)

  • Kim, Hyun-Joo;Bae, Hyeun-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.147-155
    • /
    • 2012
  • Switchgrass was selected as a promising biomass resource for bioethanol production through popping pretreatment, enzymatic saccharification and fermentation using commercial cellulase and xylanase, and fermenting yeast. The reducing sugar yields of popping pretreated switchgrass after enzymatic saccharification were above 95% and the glucose in thesaccharificaiton solution to ethanol conversion rate after fermentation with $Saccharomyces$ $cerevisiae$ was reached to 89.6%. Chemical compositions after popping pretreatment developed in our laboratory were 40.8% glucose and 20.3% xylose, with much of glucose remaining and only xylose decreased to 4.75%. This means that the hemicelluloses area broke off during popping pretreatment. FE-SEMexamination of substrate particles after popping pretreatment was showed fiber separation, and tearing and presence of numerous micro pores. These changes help explain, enhanced enzymatic penetration resulting in improved hydrolysis of switchgrass particles after popping pretreatment.

Ethanol Production with Glucose/Xylose Mixture by Immobilized Pichia stipitis (고정화 Pichia stipitis 를 이용한 글루코오스/자일로오스 혼합당으로부터 에탄올 생산)

  • Shin, Hyun-Seok;Kang, Seong-Woo;Lee, Sang-Jun;Jang, Eun-Ji;Suh, Young-Woong;Kim, Seung-Wook
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • To increase the production of ethanol by using sugar from lignocellulosic biomass, pentose and hexose have to be fermented simultaneously by yeast. The effects of mixed sugar and nitrogen on ethanol production by immobilized Pichia stipitis KCCM 12009 were investigated. When optimal mixed sugar and nitrogen concentration were 5% (Glucose/Xylose = 3:1) and 1%, respectively, ethanol concentration produced by immobilized P. stipitis was 19-20 g/L. In repeated fed-batch by immobilized P. stipitis, all glucose was consumed very quickly at 1-3% mixed sugar concentration. But, xylose consumption was decreased as the mixed sugar concentration increased. Also, ethanol (5.6 g/L) was stably produced and ethanol production rate was 0.13 g/$L{\cdot}h$ in immobilized cell reactor (ICR) with 1% mixed sugar (Glucose/Xylose = 3:1) as feeding media.

Optimization of Submerged Culture Conditions for Mycelial Growth and Exopolysaccharides Production by Agaricus blazei

  • Kim, Hyun-Han;Na, Jeong-Geol;Chang, Yong-Keun;Chun, Gie-Taek;Lee, Sang-Jong;Jeong, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.944-951
    • /
    • 2004
  • The influences of inoculum size, pH, and medium composition on mycelial growth and exopolysaccharides (EPS) production were investigated in shake flasks and in a bioreactor. The optimum inoculum size for both mycelial growth and EPS production was identified to be 10% (v/v) in shake flask cultures. The optimal initial pH for mycelial growth and EPS production in shake flask cultures were found to be 5.0 and 7.0, respectively. However, the optimal pH was 5.0 for both mycelial growth and EPS production in bioreactor cultures where the pH was regulated. The optimal mass ratio of the two major carbon sources, glucose to dextrin, was 1:4. The optimal mass ratio of the two major nitrogen sources, yeast extract to soy tone peptone, was 2:1. When 500 mg $1^{-1}$ of $MnSO_4-5H_2O$ was added to the bioreactor culture, both mycelial growth and EPS production were enhanced by approximately 10%. Under the optimized conditions, a mycelial biomass of 9.85 g $1^{-1}$ and an EPS concentration of 4.92 g $1^{-1}$ were obtained in 4 days.

Two-Step Process Using Immobilized Saccharomyces cerevisiae and Pichia stipitis for Ethanol Production from Ulva pertusa Kjellman Hydrolysate

  • Lee, Sang-Eun;Kim, Yi-Ok;Choi, Woo Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1434-1444
    • /
    • 2013
  • We established a two-step production process using immobilized S. cerevisiae and P. stipitis yeast to produce ethanol from seaweed (U. pertusa Kjellman) hydrolysate. The process was designed to completely consume both glucose and xylose. In particular, the yeasts were immobilized using DEAE-corncob and DEAE-cotton, respectively. The first step of the process included a continuous column reactor using immobilized S. cerevisiae, and the second step included a repeated-batch reactor using immobilized P. stipitis. It was verified that the glucose and xylose in 20 L of medium containing the U. pertusa Kjellman hydrolysate was converted completely to about 5.0 g/l ethanol through the two-step process, in which the overall ethanol yield from total reducing sugar was 0.37 and the volumetric ethanol productivity was 0.126 g/l/h. The volumetric ethanol productivity of the two-step process was about 2.7 times greater than that when P. stipitis was used alone for ethanol production from U. pertusa Kjellman hydrolysate. In addition, the overall ethanol yield from glucose and xylose was superior to that when P. stipitis was used alone for ethanol production. This two-step process will not only contribute to the development of an integrated process for ethanol production from glucose-and xylose-containing biomass hydrolysates, but could also be used as an alternative method for ethanol production.

Effect of Growth Conditions on the Biomass and Lipid Production of Euglena gracilis Cells Raised in Mixotrophic Culture (Mixotrophic 배양조건에 따른 Euglena gracilis의 성장과 지질에 미치는 영향)

  • Jeong, U-Cheol;Choi, Jong-Kuk;Kang, Chang-Min;Choi, Byeong-Dae;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.1
    • /
    • pp.30-37
    • /
    • 2016
  • Microalgae are functional foods because they contain special anti-aging inhibitors and other functional components, such as ecosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and omega-3 polyunsaturated fatty acids. Many of these functional dietary components are absent in animals and terrestrial plants. Thus, microalgae are widely utilized in human functional foods and in the feed provided to farmed fish and terrestrial livestock. Many marine organisms consume microalgae, often because they are in an appropriate portion of the cell size spectrum, but also because of their nutritional content. The nutritional requirements of marine organisms differ from those of terrestrial animals. After hatching, marine animals need small live forage species that have high omega-3 polyunsaturated fatty acid contents, including EPA and DHA. Euglena cells have both plant and animal characteristics; they are motile, elliptical in shape, 15-500 μm in diameter, and have a valuable nutritional content. Mixotrophic cell cultivation provided the best growth rates and nutritional content. Diverse carbon (fructose, lactose, glucose, maltose and sucrose) and nitrogen (tryptone, peptone, yeast extract, urea and sodium glutamate) supported the growth of microalgae with high lipid contents. We found that the best carbon and nitrogen sources for the production of high quality Euglena cells were glucose (10 g L–1) and sodium glutamate (1.0 g L–1), respectively.

Effect of Culture Conditions on Characteristics of Growth and Production of Docosahexaenoic acid (DHA) by Schizochytrium mangrovei (배양조건에 따른 Schizochytrium mangrovei의 성장 및 Docosahexaenoic acid의 생산특성)

  • Jeong, U-Cheol;Choi, Byeong-Dae;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.2
    • /
    • pp.144-153
    • /
    • 2014
  • Both docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) have attracted increasing attention since the first epidemiological report on the importance of n-3 essential fatty acids. Lipids in microbial cells play various biological roles and, consequently, much research has been carried out on their role in cell physiology. The lipid composition of microorganisms can exhibit considerable variations depending on environment. The effects of culture conditions, temperature (15, 20, 24, 28, 32 and $36^{\circ}C$), salinity (10, 20, 30, 40 and 50 psu), pH (pH5, 6, 7, 8 and 9), rotation speeds (50, 100, 150 and 200 rpm), carbon sources, nitrogen sources and C/N ratio on the production of docosahexaenoic acid, fatty-acid profiles, and acids secreted to the broth culture by the oleaginous microorganism, Schizochytrium mangrovei (KCTC 11117BP), were studied. Temperature (initially $28^{\circ}C$), salinity (20 psu), pH (pH7), rotation speeds (100 rpm), organism fatty acids, and secreted acids in the broth were varied during cultivation of S. mangrovei. At pH 7.0, S. mangrovei was able to accumulate lipids up to 40% of its biomass, with 13% (w/w) DHA content. The monosaccharides glucose and fructose, and yeast extract were suitable carbon and nitrogen sources, respectively. The primary omega-3 polyunsaturated fatty acid produced was docosahexaenoic acid.

A Facile Pretreatment Method for Rice Straw using Electron Beam Irradiation and 4-methylmorpholine-N-oxide Solution (전자선 조사와 4-메틸모포린-N-옥사이드 용액을 이용한 볏짚의 전처리 방법)

  • Lee, Byoung-Min;Lee, Jin-Young;Kang, Phil-Hyun;Jeun, Joon-Pyo
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • In this study, a facile two-step pretreatment method was investigated for producing fermentable sugars. Rice straw was pretreated using electron beam irradiation (EBI) and 4-methylmorpholine-N-oxide (NMMO) prior to enzymatic hydrolysis. In the first stage, the EBI on the rice straw was carried out at various doses (100, 300, 500 kGy) and then, irradiated rice straw was stirred with NMMO solution at 120°C for 1 h for the second stage. The pretreated rice straw was hydrolyzed by cellulase 1.5 L (70 FPU/ml) and Novozyme-188 (40 CbU/ml) at 50°C for 24, 48, and 72 h. A sugar yield of 83.8% was obtained from the pretreated rice straw after 72 h of enzymatic hydrolysis. Also, FTIR and XRD results indicate that the pretreatment of the rice straw was effective due to the synergic effects of the two-step pretreatment. In conclusion, rice straw might be a potential substrate for bioethanol production by yeast fermentation.