Browse > Article
http://dx.doi.org/10.4014/jmb.1304.04014

Two-Step Process Using Immobilized Saccharomyces cerevisiae and Pichia stipitis for Ethanol Production from Ulva pertusa Kjellman Hydrolysate  

Lee, Sang-Eun (Department of Biotechnology, Korea National University of Transportation)
Kim, Yi-Ok (Department of Biotechnology, Korea National University of Transportation)
Choi, Woo Yong (Department of Medical Biomaterials Engineering, Kangwon National University)
Kang, Do-Hyung (Korea Institute of Ocean Science and Technology)
Lee, Hyeon-Yong (Department of Food Science and Engineering, Seowon University)
Jung, Kyung-Hwan (Department of Biotechnology, Korea National University of Transportation)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.10, 2013 , pp. 1434-1444 More about this Journal
Abstract
We established a two-step production process using immobilized S. cerevisiae and P. stipitis yeast to produce ethanol from seaweed (U. pertusa Kjellman) hydrolysate. The process was designed to completely consume both glucose and xylose. In particular, the yeasts were immobilized using DEAE-corncob and DEAE-cotton, respectively. The first step of the process included a continuous column reactor using immobilized S. cerevisiae, and the second step included a repeated-batch reactor using immobilized P. stipitis. It was verified that the glucose and xylose in 20 L of medium containing the U. pertusa Kjellman hydrolysate was converted completely to about 5.0 g/l ethanol through the two-step process, in which the overall ethanol yield from total reducing sugar was 0.37 and the volumetric ethanol productivity was 0.126 g/l/h. The volumetric ethanol productivity of the two-step process was about 2.7 times greater than that when P. stipitis was used alone for ethanol production from U. pertusa Kjellman hydrolysate. In addition, the overall ethanol yield from glucose and xylose was superior to that when P. stipitis was used alone for ethanol production. This two-step process will not only contribute to the development of an integrated process for ethanol production from glucose-and xylose-containing biomass hydrolysates, but could also be used as an alternative method for ethanol production.
Keywords
Saccharomyces cerevisiae; Pichia stipitis; Ulva pertusa Kjellman; immobilization; DEAE-corncob; DEAE-cotton;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Chaplin MF, Kennedy JF. 1986. Carbohydrate analysis; A Practical Approach, pp. 3. IRL Press, Oxford, UK.
2 Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS. 2006. Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem. 41: 2333-2336.   DOI   ScienceOn
3 Bardi EP, Koutinas AA. 1994. Immobilization of yeast on delignified cellulosic material for room temperature and low-temperature wine making. J. Agric. Food Chem. 42: 221-226.   DOI   ScienceOn
4 Cardona CA, Sanchez O. 2007. Fuel ethanol production: process design trends and integration opportunities. Bioresour. Technol. 98: 2415-2457.   DOI   ScienceOn
5 Chen Y. 2011. Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review. J. Ind. Microbiol. Biotechnol. 38: 581-597.   DOI
6 Gnansounou E, Dauriat A. 2010. Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour. Technol. 101: 4980-4991.   DOI   ScienceOn
7 Choi WY, Han JG, Lee CG, Song CH, Kim JS, Seo YC, et al. 2012. Bioethanol production from Ulva pertusa Kjellman by high-temperature liquefaction. Chem. Biochem. Eng. Q. 26: 15-21.
8 Converti A, Perego P, Dominguez JM. 1999. Microaerophilic metabolism of Pachysolen tannophilus at different pH values. Biotechnol. Lett. 21: 719-723.   DOI   ScienceOn
9 Dien BS, Cotta MA, Jeffries TW. 2003. Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63: 258-266.   DOI   ScienceOn
10 Govindaswamy S, Vane LM. 2010. Multi-stage continuous culture fermentation of glucose-xylose mixtures to fuel ethanol using genetically engineered Saccharomyces cerevisiae 424A. Bioresour. Technol. 101: 1277-1284.   DOI   ScienceOn
11 Grootjen DRJ, Jansen ML, van der Lans RGJM, Luyben KChAM. 1991. Reactors in series for the complete conversion of glucose/xylose mixtures by Pichia stipitis and Saccharomyces cerevisiae. Enzyme Microb. Technol. 13: 828-833.   DOI   ScienceOn
12 Grootjen DRJ, Meijlink LHHM, van der Lans RGJM, Luyben KChAM. 1990. Cofermentation of glucose and xylose with immobilized Pichia stipitis and Saccharomyces cerevisiae. Enzyme Microb. Technol. 12: 860-864.   DOI   ScienceOn
13 Grootjen DRJ, van der Lans RGJM, Luyben KChAM. 1991. Conversion of glucose/xylose mixtures by Pichia stipitis under oxygen-limited conditions. Enzyme Microb. Technol. 13: 648-654.   DOI   ScienceOn
14 Grootjen DRJ, van der Lans RGJM, Luyben KChAM. 1990. Effects of the aeration rate on the fermentation of glucose and xylose by Pichia stipitis CBS 5773. Enzyme Microb. Technol. 12: 20-23.   DOI   ScienceOn
15 Laplace JM, Delgenes JP, Moletta R, Navarro JM. 1993. Ethanol production from glucose and xylose by separated and co-culture processes using high cell density systems. Process Biochem. 28: 519-525.   DOI   ScienceOn
16 Jeffries TW. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17: 320-326.   DOI   ScienceOn
17 John RP, Anisha GS, Nampoothiri KM, Pandey A. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 102: 186-193.   DOI   ScienceOn
18 Krishnan MS, Ho NWY, Tsao GT. 1999. Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33). Appl. Biochem. Biotechnol. 78: 373-388.   DOI   ScienceOn
19 Lebeau T, Jouenne T, Junter GA. 1998. Continuous alcoholic fermentation of glucose/xylose mixtures by co-immobilized Saccharomyces cerevisiae and Candida shehatae. Appl. Microbiol. Biotechnol. 50: 309-313.   DOI
20 Lebeau T, Jouenne T, Junter GA. 2007. Long-term incomplete xylose fermentation, after glucose exhaustion, with Candida shehatae co-immobilized with Sacchromyces cerevisiae. Microbiol. Res. 162: 211-218.   DOI   ScienceOn
21 Lebeau T, Jouenne T, Junter GA. 1997. Simultaneous fermentation of glucose and xylose by pure and mixed cultures of Saccharomyces cerevisiae and Candida shehatae immobilized in a two-chambered bioreactor. Enzyme Microb. Technol. 21: 265-271.   DOI   ScienceOn
22 Lee S-E, Lee JE, Shin GY, Choi WY, Kang D-H, Lee H-Y, et al. 2012. Development of practical and cost-effective medium for the bioethanol production from the seaweed hydrolysate in surface-aerated fermentor by repeated-batch operation. J. Microbiol. Biotechnol. 22: 107-113.   DOI   ScienceOn
23 Lee S-E, Lee CG, Kang D-H, Lee H-Y, Jung K-H. 2012. Preparation of corncob grits as a carrier for immobilizing yeast cells for ethanol production. J. Microbiol. Biotechnol. 22: 1673-1680.   DOI   ScienceOn
24 Lee S-E, Kim HJ, Choi WY, Kang D-H, Lee H-Y, Jung K-H. 2011. Optimal surface aeration rate for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum using Pichia stipitis. KSBB J. 26: 311-316.   DOI   ScienceOn
25 Lee S-E, Lee JE, Kim EJ, Choi JH, Choi WY, Kang D-H, et al. 2012. Immobilization of yeast Pichia stipitis for ethanol production. J. Life Sci. 22: 508-515.   DOI   ScienceOn
26 Lee JE, Lee S-E, Cho WY, Kang D-H, Lee H-Y, Jung K-H. 2011. Bioethanol production using a yeast Pichia stipitis from the hydrolysate of Ulva pertusa Kjellman. Kor. J. Mycol. 39: 243-248.   DOI   ScienceOn
27 Ligthelm ME, Prior BA, du Preez JC. 1988. The oxygen requirements of yeasts for the fermentation of D-xylose and D-glucose to ethanol. Appl. Microbiol. Biotechnol. 28: 63-68.   DOI
28 Sanchez S, Bravo V, Castro E, Moya AJ, Camacho F. 2002. The fermentation of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol. J. Chem. Technol. Biotechnol. 77: 641-648.   DOI   ScienceOn
29 Sarkar N, Ghosh SK, Bannerjee S, Aikat K. 2012. Bioethanol production from agricultural wastes: an overview. Renew. Energy 37: 19-27.   DOI   ScienceOn
30 Sedlak M, Ho NWY. 2004. Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl. Biochem. Biotechnol. 113-116: 403-416.
31 Taniguchi M, Itaya T, Tohma T, Fujii M. 1997. Ethanol production from a mixture of glucose and xylose by a novel co-culture system with two fermentors and two microfiltration modules. J. Ferment. Bioeng. 83: 59-64.   DOI   ScienceOn
32 Taniguchi M, Itaya T, Tohma T, Fujii M. 1997. Ethanol production of a mixture of glucose and xylose by co-culture of Pichia stipitis and a respiratory-deficient mutant of Saccharomyces cerevisiae. J. Ferment. Bioeng. 83: 364-370.   DOI   ScienceOn
33 Shuler ML, Kargi F. 2002. Bioprocess Engineering: Basic Concepts, pp. 273-275. 2nd Ed. Prentice-Hall Inc., New Jersey, USA.
34 Skoog K, Hahn-Hagerdal B. 1990. Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl. Environ. Microbiol. 56: 3389-3394.
35 Unrean P, Srienc F. 2010. Continuous production of ethanol from hexoses and pentoses using immobilized mixed cultures of Escherichia coli strains. J. Biotechnol. 150: 215-223.
36 Wei N, Quarterman J, Jin YS. 2013. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol. 31: 70-77.   DOI   ScienceOn
37 Yeon J-H, Lee S-E, Choi WY, Choi W-S, Kim I-C, Lee H-Y, et al. 2011. Bioethanol production from the hydrolysate of rape stem in a surface-aerated fermentor. J. Microbiol. Biotechnol. 21: 109-114.   DOI   ScienceOn
38 Yeon J-H, Lee S-E, Choi WY, Kang D-H, Lee H-Y, Jung K-H. 2011. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21: 323-331.
39 Zhao L, Zhang X, Tan T. 2008. Influence of various glucose/xylose mixtures on ethanol production by Pachysolen tannophilus. Biomass Bioenergy 32: 1156-1161.   DOI   ScienceOn