Production of Bioactive Compounds from Fungi Grown on Ginseng-Steaming Effluent

인삼 유출액에서 생육한 곰팡이로부터 생리 활성 물질의 생산

  • Jang, Jeong-Hoon (Department of Life Science and Genetic Engineering, Paichai University) ;
  • Kim, Jae-Ho (Korean Food Research Institute) ;
  • Kim, Na-Mi (Korean Ginseng Corporation, Central Research Institute) ;
  • Kim, Ha-Kun (Department of Life Science and Genetic Engineering, Paichai University) ;
  • Lee, Jong-Soo (Department of Life Science and Genetic Engineering, Paichai University)
  • Received : 2010.06.04
  • Accepted : 2010.06.11
  • Published : 2010.06.28

Abstract

We described production of bioactive compounds from fungi grown on Korean ginseng-steaming effluents (GSE) for develop high-value added nutraceuticals from Korean GSE. Hansenula anomala KCCM 11473, which grew well in Korean GSE had high RNA content, and its optimal autolysis conditions were established to produce 5'-ribonucleotides (13.9~28.5 mg/g of biomass) at $55^{\circ}C$ and pH 5.0 for 24 h. 5'-Phosphodiesterase and adenyl deaminase were not effective in increasing the yield of 5'-ribinucleatides, but the yield of IMP increased significantly only after the addition of 1.0% adenyl deaminase. Saccharomyces cerevisiae showed the highest growth in the GSE medium. 267.1 mg of S. cerevisiae biomass was produced from 1 g of GSE solid and medicinal ginsenoside-$Rg_3$ contents was determined with 0.033 mg. Mucor miehei KCTC 6011 produced approximately 120 mg of chitosan per g-dry mycelium in 84 h at $25^{\circ}C$ when grown in the GSE (pH 8.0) supplemented with 0.5% yeast extract and 0.002% $CuSO_4$. Chitosan produced by M. miehei KCTC 6011 have deacetylated approximately 56% and its viscosity and molecular weight of the chitosan were 80 cps and $1.07\times10^3$ kDa, respectively. The chitosan at 1.5 mg/ml inhibited 73.9% of the mycelium growth of Rhizotonia solani in 60 h.

본 논문은 한국인삼의 추출물 제조 시 부수적으로 생산되는 유출액에 의한 환경오염을 방지하고 나아가 이들로부터 고부가가치의 생리활성물질을 유출액에서 생육이 우수한 균류로부터 생산한 논문이다. 유출액에서 생육이 좋았던 Hansenula anomala KCCM 11473으로부터 5'-ribonucleotide 생산 최적 조건은 세포현탁액의 pH를 5.0으로 하고 $55^{\circ}C$에서 24시간 자기소화 시키는 조건이다. 또한 생육이 좋았던 Saccharomyces cerevisiae는 유출액 배지에서 배양 중 약리 성분이 Ginsenoside-Rg3를 고형물 1 g당 0.033 mg을 생성하였다. Mucor miehei KCTC 6011을 유출액에 접종하여 $25^{\circ}C$에서 84시간 배양했을 때 균체 건물 g당 120 mg의 키토산을 생성하였다.

Keywords

References

  1. Bartnicki-Garcia, S. and C. A. Nickerson. 1962. Isolation, composition and structure of cell walls of filamentous and yeast-like forms of Mucor rouxii. Biochem. Biophy. Acta 58: 102-119. https://doi.org/10.1016/0006-3002(62)90822-3
  2. Belem, M. A. F., B. M. Gibbs, I. Casini, and B. H. Lee. 1997. Enzymatic production of ribonucleotides from autolysates of Kluyveromyces marxianus grown on whey. J. Food Sci. 62: 851-855. https://doi.org/10.1111/j.1365-2621.1997.tb15470.x
  3. Crueger, W., and A. Crueger. 1990. Biotechnology, pp. 175-187. A textbook of industrial microbiology, 2nd ed. Science Tech. Publisher, Sunderland, USA.
  4. Fish, W. W. 1991. A method for quantification of 5'-mononucleotides in foods and food ingredients. J. Agric. Food Chem. 39: 1098-1101. https://doi.org/10.1021/jf00006a019
  5. Ghaouth, A. E., J. Arul, J. Grenier, and A. Asselin. 1992. Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology 82: 398-402. https://doi.org/10.1094/Phyto-82-398
  6. Haruhiko, Y., A. Tomoteru, N. Shuichi. H. Jun, H. Sachio, and T. Yoshiyuki. 1998. Chitosan production from shochu distillery wastewater by funguses. J. Ferment. Bioeng. 85: 246-249. https://doi.org/10.1016/S0922-338X(97)86777-3
  7. Jeong, S. C., D. H. Lee, and J. S. Lee. 2006. Production and characterization of an anti-angiogenic agent from Saccharomyces cerevisiae K-7. J. Microbiol. Biotechnol. 16: 1904-1911.
  8. Kim J. H., B. H. Lee, and J. S. Lee. 2002. Production of ribonucleotides from autolysates of Hansenula anomala grown on Korean ginseng-steaming effluents. J. Biosci. Bioeng. 93: 318-321.
  9. Kim J. S., J. W. Kim, W. Shim, and U. H. Pek. 1999. Development of Saccharomyces cerevisiae strains with high RNA content. Kor. J. Food Sci. Technol. 31: 465-475.
  10. Kim, J. H., D. H. Lee, S. C. Jeong, K. S. Chung, and J. S. Lee. 2004. Characterization of antihypertensive angiotensin 1-converting enzyme inhibitor from Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 14: 1318-1323.
  11. Kim, J. H., K. S. Lee, N. M. Kim, and J. S. Lee. 2002. Production and characterization of chitosan from ginseng-steaming effluents by Mucor miehei. J. Microbiol. Biotechnol. 12: 760-765.
  12. Kim, N. M., J. S. Lee, and B. H. Lee. 2000. Enzymatic hydrolysis of Korean ginseng starch and characteristics of produced maltooligosaccharides. J. Ginseng Res. 24: 41-45.
  13. Kim, N. M., J. S. Lee, and B. H. Lee. 2000. Enzymatic hydrolysis of Korean ginseng starch and production of maltooligosaccharides. Kor. J. Ginseng 20: 35-41.
  14. Kim, N. M., S. H. So, S. G. Lee, J. E. Song, D. S. Seo, and J. S. Lee. 2008. Physiological functionality and enzyme activity of biomass from Pichia anomala grown on ginseng-steming effluent. Mycobiology 36: 148-151. https://doi.org/10.4489/MYCO.2008.36.3.148
  15. Kim, N. M., S. K. Lee, H. H. Cho, S. H. So, D. P. Jang, S. T. Han, and J. S. Lee. 2009, Production of $ginsenoside-Rg_3$ enriched yeast biomass using ginseng steaming effluent. J. Ginseng Res. 33: 183-188. https://doi.org/10.5142/JGR.2009.33.3.183
  16. Kim, S. K. and E. H. Lee. 1997. Food industrial application of chitin and chitosan. J. Chitin and Chitosan 2: 43-59.
  17. Kobayashi, T., Y. Takiguchi, K. Shimahara, and T. sannan. 1998. Distribution of chitosan in Absidia strains and some properties of the chitosan isolated. Nippon Nogeikagakukaishi 62: 1463-1469.
  18. Lee, D. H., D. H. Lee, and J. S. Lee. 2007. Characterization of a new antidementia ${\beta}-secretase$ inhibitory peptide from Saccharomyces cerevisiase. Enzyme and Microbial Technol. 42: 83-88. https://doi.org/10.1016/j.enzmictec.2007.08.003
  19. Lee, J. S., K. W. Hyun, S. C. Jeung, J. H. Kim, Y. J. Choi, and C. B. Miguez. 2004. Production of ribonucleotides by autolysis of Pichia anomala mutant and some physiological activities. Can. J. Microbiol. 50: 489-492. https://doi.org/10.1139/w04-032
  20. Lee, J. S., S. H. Yi, S. J. Kwon, C. Ahn, and J. Y. Yoo. 1997. Enzyme activities and physiological functionality of yeasts from traditional Meju. Kor. J. Appl. Microbiol. Biotechnol. 25: 448-453.
  21. Lee, S. J., J. Y. Uhm, and Y. H. Lee. 1996. Effect of chitosan on the growth of Botryosphaeria dothidea, the causal fungus of apple white rot. Kor. J. Appl. Microbiol. Biotechnol. 24: 261-267.
  22. Morimura, S., K. Kita, M. Nakagawa, and Y. Sonoda. 1994. Production of fungal protein by Aspergillus awamori wasterwater. J. Ferment. Bioeng. 78: 160-163. https://doi.org/10.1016/0922-338X(94)90256-9
  23. Orban, E., G. B. Quaglia, I. Casini, and M. Moresi. 1994. Effect of temperature and yeast concentration on the autolysis of Kluyveromyces fragilis grown on lactose based media. J. Food Eng. 21: 245-261. https://doi.org/10.1016/0260-8774(94)90190-2
  24. Park, H. K. and K. H. Lee. 1996. Production of microbial chitosan from Rhizopus japonicas. J. Food & Nutr. 9: 336-340.
  25. Pimenov, A. M., Y. V. Tikhonov, and P. T. Toguzov. 1986. The separation of the major ribonucleotides, nucleosides and bases in reverse-phase ion-pair chromatography. J. Liquid Chromatog. 9: 1003-1019. https://doi.org/10.1080/01483918608076686
  26. Waldron, C. and F. Lacroute. 1975. Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J. Bacteriol. 122: 855-865.
  27. Wehr, C. T. and L. W. Parks. 1969. Macromolecular synthesis in Saccharomyces cerevisiae in different growth media. J. Bacteriol. 98: 458-466.
  28. Yun, Y. S., K. S. Kim, and Y. N. Lee. 1999. Antibacterial and antifungal effect of chitosan. Kor. J. Chitin and Chitosan 4: 8-14.