• 제목/요약/키워드: wind velocity/direction

검색결과 251건 처리시간 0.026초

도플러 라이다를 이용한 ICE-POP 2018 기간 수평바람 연직 프로파일 산출 및 정확도 평가 (Retrieval and Accuracy Evaluation of Horizontal Winds from Doppler Lidars During ICE-POP 2018)

  • 김권일;류근수;백승우;신규희;이규원
    • 대기
    • /
    • 제32권2호
    • /
    • pp.163-178
    • /
    • 2022
  • This study aims to evaluate the accuracy of retrieved horizontal winds with different quality control methods from three Doppler lidars deployed over the complex terrain during the PyeongChang 2018 Olympic and Paralympic games. To retrieve the accurate wind profile, this study also proposes two quality control methods to distinguish between meteorological signals and noises in the Doppler velocity field, which can be broadly applied to different Doppler lidars. We evaluated the accuracy of retrieved winds with the wind measurements from the nearby or collocated rawinsondes. The retrieved wind speed and direction show a good agreement with rawinsonde with a correlation coefficient larger than 0.9. This study minimized the sampling error in the wind evaluation and estimation, and found that the accuracy of retrieved winds can reach ~0.6 m s-1 and 3° in the quasi-homogeneous wind condition. We expect that the retrieved horizontal winds can be used in the high-resolution analysis of the horizontal winds and provide an accurate wind profile for model evaluation or data assimilation purposes.

국내 인프라사운드 전파특성 연구 (Infrasound Wave Propagation Characteristics in Korea)

  • 제일영
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.63-69
    • /
    • 2000
  • Korea Institute of Geology Mining and Materials(KIGAM) cooperating with Southern Methodist University(SMU) has been operating seismo-acoustic array in Chul-Won area to discriminate man-made explosions from natural earthquakes since at the end of July 1999. In order to characterize propagation parameters of detected seismo-acoustic signal and to associate these signals as a blast event accompanying seismic and acoustic signals simultaneously it is necessary to understand infrasound wave propagation in the atmosphere. Two comparable Effective Sound Velocity Structures(ESVS) in atmosphere were constructed by using empirical model (MSISE90 and HWM93) and by aerological observation data of Korea Meteorological Administration (KMA) at O-San area. Infrasound propagation path computed by empirical model resulted in rare arival of refracted waves on ground less than 200km from source region. On the other hand Propagation paths by KMA more realistic data had various arrivals at near source region and well agreement with analyzed seismo-acoustic signals from Chul-Won data. And infrasound propagation in specific direction was very influenced by horizontal wind component in that direction. Linear travel time curve drawn up by 9 days data of the KMA in autumn season showed 335.6m/s apparent sound velocity in near source region. The propagation characteristics will be used to associate seismo-acoustic signals and to calculate propagation parameters of infrasound wave front.

  • PDF

Effect on measurements of anemometers due to a passing high-speed train

  • Zhang, Jie;Gao, Guangjun;Huang, Sha;Liu, Tanghong
    • Wind and Structures
    • /
    • 제20권4호
    • /
    • pp.549-564
    • /
    • 2015
  • The three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations and k-${\varepsilon}$ double equations turbulent model were used to investigate the effect on the measurements of anemometers due to a passing high-speed train. Sliding mesh technology in Fluent was utilized to treat the moving boundary problem. The high-speed train considered in this paper was with bogies and inter-carriage gaps. Combined with the results of the wind tunnel test in a published paper, the accuracy of the present numerical method was validated to be used for further study. In addition, the difference of slipstream between three-car and eight-car grouping models was analyzed, and a series of numerical simulations were carried out to study the influences of the anemometer heights, the train speeds, the crosswind speeds and the directions of the induced slipstream on the measurements of the anemometers. The results show that the influence factors of the train-induced slipstream are the passing head car and tail car. Using the three-car grouping model to analyze the train-induced flow is reasonable. The maxima of horizontal slipstream velocity tend to reduce as the height of the anemometer increases. With the train speed increasing, the relationship between $V_{train}$ and $V_{induced\;slipstream}$ can be expressed with linear increment. In the absence of natural wind conditions, from the head car arriving to the tail car leaving, the induced wind direction changes about $330^{\circ}$, while under the crosswind condition the wind direction fluctuates around $-90^{\circ}$. With the crosswind speed increasing, the peaks of $V_X,{\mid}V_{XY}-V_{wind}{\mid}$ of the head car and that of $V_X$ of the tail car tend to enlarge. Thus, when anemometers are installed along high-speed railways, it is important to study the effect on the measurements of anemometers due to the train-induced slipstream.

녹지의 대기정화효과 분석을 위한 해석적 대기확산모델의 유도 (Analytic Model for Concentration Deficit Profile Caused by a Large Vegetated Area)

  • 김석철
    • 한국대기환경학회지
    • /
    • 제16권5호
    • /
    • pp.539-544
    • /
    • 2000
  • A simple analytic model is proposed here to analyze the concentration deficit field caused by a large area of vegetated area. With non-dimensional deposition velocity chosen as small parameter, the regular perturbation method is exploited to derive the mass balance equation and the dynamic equations for the concentration deficit field, Analytic solutions to those equations are obtained in a closed form for several cases of interest, assuming that the concentration field is stationary and the plume can be nicely approximated as Gaussian for a point source. The results suggest that quite a negligible fraction (less than 1%) of the gaseous air pollutants emitted into the air is removed by the vegetated area of which width is 4 km in wind-wise direction, the typical dimension of the Restricted Development Zones around the metropolitan regions in South Korea.

  • PDF

5공 프로브 실험실용 교정 시스템 개발 (Development of a Laboratory-based Calibration System for 5-Hole Probes)

  • 김창민;백승찬;지창은;황원태
    • 한국가시화정보학회지
    • /
    • 제18권3호
    • /
    • pp.122-128
    • /
    • 2020
  • In the field of experimental fluid dynamics, the 5-hole probe is one of the most widely used tools to measure flow velocity and pressure. We hereby describe the development of an inexpensive laboratory-based flow calibration system for 5-hole probes. The system is applied to a custom L-shaped probe, and the probe performance is compared against a standard commercial probe in a custom wind tunnel. The setup allows rotation of the probe around the yaw and pitch axes. Static and total pressure values are calculated, and then calibration maps are constructed based on the yaw and pitch angles. Using these maps, errors of the custom probe are found to be ±5% for velocity magnitude and ±3° for direction, compared to the commercial probe, when both pitch and yaw angles are within 40°.

입사각의 변화에 따른 터빈 캐스케이드에서 손실계수에 관한 실험적 연구 (An Experimental Study on Loss Coefficient of Turbine Cascade with Incidence Angles)

  • 이주형;허원회;전창수
    • 한국유체기계학회 논문집
    • /
    • 제2권4호
    • /
    • pp.48-56
    • /
    • 1999
  • For the study on loss coefficients of turbine cascade with variation of incidence angle, the wind-tunnel tests were performed under the ranges in velocity of 10 m/s, 15 m/s, 20 m/s and incidence angles from $-20^{\circ}\;to\;20^{\circ}$ by intervals of $5^{\circ}$. Comparing our results with Soderberg's prediction, differences in loss coefficient were $2.5\%\;and\;2.8\%$ each for 10 m/s and 15 m/s. A large disagreement of $30.3\%$ was showed at 20 m/s freestream velocity. The comparisons of these test results with Ainley's prediction showed an $8\%$ difference in the case of 20 m/s freestream velocity. Test results were approximately comparable with Ainley's loss prediction's in incidence angles. Generally, averaged total pressure loss seemed to be decreased as Reynolds number increased. The total pressure loss coefficients were increased parabolically, as incidence angles were increased negatively and positively from $0^{\circ}$, in all speed ranges. At the far low freestream velocities, minimum loss accurred between $-5^{\circ}\;and\;+5^{\circ}$. But this minimum range narrowed the location of this range by shifting to the direction of the angle as freestream velocity was increased.

  • PDF

Numerical simulation for unsteady flow over marine current turbine rotors

  • Hassanzadeh, A. Reza;Yaakob, Omar bin;Ahmed, Yasser M.;Ismail, M. Arif
    • Wind and Structures
    • /
    • 제23권4호
    • /
    • pp.301-311
    • /
    • 2016
  • The numerous benefits of Savonius turbine such as simple in structure, has appropriate self-start ability, relatively low operating velocity, water acceptance from any direction and low environmental impact have generated interests among researchers. However, it suffers from a lower efficiency compared to other types of water turbine. To improve its performance, parameters such flow pattern, pressure and velocity in different conditions must be analyzed. For this purpose, a detailed description on the flow field of various types of Savonius rotors is required. This article presents a numerical study on a nonlinear two-dimensional flow over a classic Savonius type rotor and a Benesh type rotor. In this experiment, sliding mesh was used for solving the motion of the bucket. The unsteady Reynolds averaged Navier-Stokes equations were solved for velocity and pressure coupling by using the SIMPLE (Semi-Implicit Method for Pressure linked Equations) algorithm. Other than that, the turbulence model using $k-{\varepsilon}$ standard obtained good results. This simulation demonstrated the method of the flow field characteristics, the behavior of velocity vectors and pressure distribution contours in and around the areas of the bucket.

풍력타워의 효율적인 설계변수에 대한 실험적 연구 (An Experimental Study for Efficient Design Parameters of a Wind Power Tower)

  • 조수용;최상규;김진균;조종현
    • 한국항공우주학회지
    • /
    • 제46권2호
    • /
    • pp.114-123
    • /
    • 2018
  • 풍력타워는 수직형 풍력터빈의 성능을 향상하기 위하여 사용되어진다. 하지만 풍력타워의 성능은 내부반경, 외부반경, 안내벽의 개수 등의 설계변수에 의하여 좌우된다. 따라서 본 연구에서는 풍력타워의 효율적인 설계변수를 찾기 위하여 실험적인 연구를 수행하였다. 실험에 사용된 풍동의 시험부는 높이 2 m, 폭 2.2 m이며, 7개의 안내벽을 가진 풍력타워의 한 층을 모델로 제작하고, 그 내부에 풍력터빈을 설치하였다. 다양한 설계변수에 대하여 실험을 하기 위하여 세 가지 종류의 안내벽을 사용하였다. 상대적인 성능평가를 위하여 동일한 입구속도에서 풍력타워를 원주방향으로 회전이동하여 출력계수를 측정하였다. 실험의 결과에서 풍력타워의 내부반경과 풍력터빈의 회전반경과의 간격이 풍력터빈의 성능을 향상하는데 가장 큰 영향을 미치는 변수임을 보였다.

부산해안지역 워터프런트의 풍환경 분석 연구 -해운대, 수영만, 광안리 대상으로- (Analysis of Wind Environment at Waterfront in Busan - About Haeundae, Suyoungman and Gwanganli -)

  • 도근영
    • 한국항해항만학회지
    • /
    • 제33권5호
    • /
    • pp.369-374
    • /
    • 2009
  • 최근 워터프런트의 개방성과 자연환경을 만끽하기 위한 중요한 공간으로서 오픈스페이스와 이에 연계된 노천카페 및 야외레스토랑의 계획이 많아지고 있다. 그러나 워터프런트는 낮은 기온, 강풍, 강한 일사 등 도심 및 내륙지역과는 다른 기후특성을 가지고 있기 때문에 노천카페, 야외레스토랑 등을 계획할 때에는 대상 워터프런트의 기후특성, 특히 풍환경에 대한 검토가 필요하다. 본 연구는 부산의 대표적 워터프론트인 해운대, 수영만, 광안리 지역을 대상으로 오픈스페이스와 노천카페 및 야외레스토랑 계획을 위한 워터프런트의 풍환경에 대해 검토하였다. 검토경과를 요약하면 아래와 같다. 1)해운대-광안리까지의 워터프런트는 야외레스토랑 등에 적합한 지역이다. 2)3월말에서 11월 까지가 야외레스토랑 등을 이용하기에 적합한 시기이다.

심해 풍파 아래에서의 응집 구조 (Coherent Structures beneath Wind-Generated Deepwater Waves)

  • 오상호;서경덕
    • 한국해안해양공학회지
    • /
    • 제19권1호
    • /
    • pp.16-28
    • /
    • 2007
  • 이 연구에서는 심해 풍파 아래에서의 응집구조(coherent structures)에 대한 실험실 실험 결과를 제시하였다. 풍속과 취송거리가 서로 다른 실험 조건에서 입자화상유속계를 이용하여 취득된 심해 풍파의 속도장으로부터 와도장을 가시화하고 응집구조가 시 공간적으로 변천하는 양상 및 그에 따른 와도의 연직 분포 변화를 정성적으로 분석하였다. 파봉 아래에서는 파와 같은 위상으로 함께 진행하는 응집구조가 존재함을 확인하였다. 이 응집구조의 회전 방향은 바람이 10 m/s 이하인 실험 조건에서는 파 내부의 입자 궤도 운동과 반대 방향인 반면, 바람의 세기가 약 13 m/s이고 파봉 근처에서 쇄파가 발생하는 경우에는 같은 방향이었다. 수면 근처에서는 응집구조의 진행에 따른 복잡한 소용돌이 상호 작용이 나타나는 반면, 수면으로부터 깊은 수심에서는 파 궤도 운동의 영향이 미미하여 응집구조의 시 공간적 변화가 거의 없었다.