Browse > Article
http://dx.doi.org/10.14191/Atmos.2022.32.2.163

Retrieval and Accuracy Evaluation of Horizontal Winds from Doppler Lidars During ICE-POP 2018  

Kim, Kwonil (Department of Atmospheric Sciences, Center for Atmospheric REmote Sensing (CARE), Kyungpook National University)
Lyu, Geunsu (Department of Atmospheric Sciences, Center for Atmospheric REmote Sensing (CARE), Kyungpook National University)
Baek, SeungWoo (Department of Atmospheric Sciences, Center for Atmospheric REmote Sensing (CARE), Kyungpook National University)
Shin, Kyuhee (Department of Atmospheric Sciences, Center for Atmospheric REmote Sensing (CARE), Kyungpook National University)
Lee, GyuWon (Department of Atmospheric Sciences, Center for Atmospheric REmote Sensing (CARE), Kyungpook National University)
Publication Information
Atmosphere / v.32, no.2, 2022 , pp. 163-178 More about this Journal
Abstract
This study aims to evaluate the accuracy of retrieved horizontal winds with different quality control methods from three Doppler lidars deployed over the complex terrain during the PyeongChang 2018 Olympic and Paralympic games. To retrieve the accurate wind profile, this study also proposes two quality control methods to distinguish between meteorological signals and noises in the Doppler velocity field, which can be broadly applied to different Doppler lidars. We evaluated the accuracy of retrieved winds with the wind measurements from the nearby or collocated rawinsondes. The retrieved wind speed and direction show a good agreement with rawinsonde with a correlation coefficient larger than 0.9. This study minimized the sampling error in the wind evaluation and estimation, and found that the accuracy of retrieved winds can reach ~0.6 m s-1 and 3° in the quasi-homogeneous wind condition. We expect that the retrieved horizontal winds can be used in the high-resolution analysis of the horizontal winds and provide an accurate wind profile for model evaluation or data assimilation purposes.
Keywords
Wind measurement; Wind profile; Doppler lidar; Quality control; PyeongChang 2018 Olympic and Paralympic games;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Pichugina, Y. L., R. M. Banta, W. A. Brewer, S. P. Sandberg, and R. M. Hardesty, 2012: Doppler lidar-based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications. J. Appl. Meteorol. Climatol., 51, 327-349, doi:10.1175/JAMC-D-11-040.1.   DOI
2 Hwang, H., S.-H. Eun, B.-G. Kim, S.-J. Park, and G.-M. Park, 2020: Occurrence characteristics of sea breeze in the Gangneung region for 2009~2018. Atmosphere, 30, 221-236, doi:10.14191/ATMOS.2020.30.3.221 (in Korean with English abstract).   DOI
3 Keum, W.-H., S.-H. Lee, D.-I. Lee, S.-S. Lee, and Y.-H. Kim, 2021: Evaluation and improvement of the KMAPP surface wind speed prediction over complex terrain areas. Atmosphere, 31, 85-100, doi:10.14191/Atmos.2021.31.1.085 (in Korean with English abstract).   DOI
4 Risan, A., J. A. Lund, C.-Y. Chang, and L. Saetran, 2018: Wind in complex terrain-Lidar measurements for evaluation of CFD simulations. Remote Sens., 10, 59, doi:10.3390/rs10010059.   DOI
5 Shun, C. M., and P. W. Chan, 2008: Applications of an infrared Doppler lidar in detection of wind shear. J. Atmos. Ocean. Technol., 25, 637-655, doi:10.1175/2007JTECHA1057.1.   DOI
6 Smalikho, I. N., V. A. Banakh, F. Holzapfel, and S. Rahm, 2015: Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar. Opt. Express, 23, A1194-A1207, doi:10.1364/oe.23.0a1194.   DOI
7 Vakkari, V., A. J. Manninen, E. J. O'Connor, J. H. Schween, P. G. Van Zyl, and E. Marinou, 2019: A novel post-processing algorithm for Halo Doppler lidars. Atmos. Meas. Tech., 12, 839-852, doi:10.5194/amt-12-839-2019.   DOI
8 Weissmann, M., R. H. Langland, C. Cardinali, P. M. Pauley, and S. Rahm, 2012: Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts. Q. J. R. Meteorol. Soc., 138, 118-130, doi:10.1002/qj.896.   DOI
9 Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteorol., 7, 105-113, doi:10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.   DOI
10 Yamartino, R. J., 1984: A comparison of several "single-pass" estimators of the standard deviation of wind direction. J. Clim. Appl. Meteorol., 23, 1362-1366.   DOI
11 Dabas, A. M., P. Drobinski, and P. H. Flamant, 1999: Adaptive filters for frequency estimate of heterodyne Doppler lidar returns: Recursive implementation and quality control. J. Atmos. Ocean. Technol., 16, 361-372, doi:10.1175/1520-0426(1999)016<0361:afffeo>2.0.co;2.   DOI
12 Frehlich, R. G., and M. J. Yadlowsky, 1994: Performance of mean-frequency estimators for Doppler radar and lidar. J. Atmos. Ocean. Technol., 11, 1217-1230, doi:10.1175/1520-0426(1994)011<1217:POMFEF>2.0.CO;2.   DOI
13 Tsai, C.-L. L., K. Kim, Y.-C. Liou, G. Lee, and C.-K. Yu, 2018: Impacts of topography on airflow and precipitation in the Pyeongchang area seen from multiple-Doppler radar observations. Mon. Wea. Rev., 146, 3401-3424, doi:10.1175/MWR-D-17-0394.1.   DOI
14 Jammalamadaka, S. R., and A. SenGupta, 2001: Topics in circular statistics. World Scientific, 336 p.
15 Kopp, F., S. Rahm, and I. Smalikho, 2004: Characterization of aircraft wake vortices by 2-㎛ pulsed Doppler lidar. J. Atmos. Ocean. Technol., 21, 194-206, doi:10.1175/1520-0426(2004)021<0194:COAWVB>2.0.CO;2.   DOI
16 Park, M.-S., S.-H. Park, J.-H. Chae, M.-H. Choi, Y. Song, M. Kang, and J.-W. Roh, 2017: High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea. Atmos. Meas. Tech., 10, 1575-1594, doi:10.5194/amt-10-1575-2017.   DOI
17 Pearson, G., F. Davies, and C. Collier, 2009: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Ocean. Technol., 26, 240-250, doi:10.1175/2008JTECHA1128.1.   DOI
18 Sathe, A., J. Mann, N. Vasiljevic, and G. Lea, 2015: A sixbeam method to measure turbulence statistics using ground-based wind lidars. Atmos. Meas. Tech., 8, 729-740, doi:10.5194/amt-8-729-2015.   DOI
19 WMO, 2022: Observing Systems Capability Analysis and Review tool. [Available online at https://space.oscar.wmo.int/variables/view/wind_horizontal] (Accessed 18 Jan 2022).
20 Chan, P. W., 2017: Severe wind shear at Hong Kong International Airport: climatology and case studies. Meteorol. Appl., 24, 397-403, doi:10.1002/met.1637.   DOI
21 Kim, D.-Y., H.-S. Jeong, Y.-H. Kim, and B.-J. Kim, 2018: Comparative assessment of wind resources between west offshore and onshore regions in Korea. Atmosphere, 28, 1-13, doi:10.14191/Atmos.2018.28.1.001 (in Korean with English abstract).   DOI
22 Dai, L., J. Xin, H. Zuo, Y. Ma, L. Zhang, X. Wu, Y. Ma, D. Jia, and F. Wu, 2020: Multilevel validation of doppler wind lidar by the 325 m meteorological tower in the planetary boundary layer of beijing. Atmosphere, 11, 1051, doi:10.3390/atmos11101051.   DOI
23 Drew, D. R., J. F. Barlow, and S. E. Lane, 2013: Observations of wind speed profiles over Greater London, UK, using a Doppler lidar. J. Wind Eng. Ind. Aerodyn., 121, 98-105, doi:10.1016/j.jweia.2013.07.019.   DOI
24 Gao, J., K. K. Droegemeier, J. Gong, and Q. Xu, 2004: A method for retrieving mean horizontal wind profiles from single-Doppler radar observations contaminated by aliasing. Mon. Wea. Rev., 132, 1399-1409, doi:10.1175/1520-0493-132.6.1399.   DOI
25 Liu, Z., J. F. Barlow, P.-W. Chan, J. C. H. Fung, Y. Li, C. Ren, H. W. L. Mak, and E. Ng, 2019: A review of progress and applications of pulsed Doppler wind LiDARs. Remote Sens., 11, 2522, doi:10.3390/rs11212522.   DOI
26 Mariani, Z., R. Crawford, B. Casati, and F. Lemay, 2020: A multi-year evaluation of Doppler lidar wind-profile observations in the Arctic. Remote Sens., 12, 323, doi:10.3390/rs12020323.   DOI
27 Park, M.-S., and M.-H. Choi, 2016: Development of a quality check algorithm for the WISE pulsed Doppler wind lidar. Atmosphere, 26, 461-471, doi:10.14191/atmos.2016.26.3.461 (in Korean with English abstract).   DOI
28 Paschke, E., R. Leinweber, and V. Lehmann, 2015: An assessment of the performance of a 1.5 ㎛ Doppler lidar for operational vertical wind profiling based on a 1-year trial. Atmos. Meas. Tech., 8, 2251-2266, doi:10.5194/amt-8-2251-2015.   DOI