Coherent Structures beneath Wind-Generated Deepwater Waves

심해 풍파 아래에서의 응집 구조

  • Oh, Sang-Ho (Coastal Engineering Research Department, Korea Ocean Research and Development Institute) ;
  • Suh, Kyung-Duck (Department of Civil, Urban and Geosystem Engineering & Engineering Research Institute, Seoul National University) ;
  • Mizutani, Natsuki (Department of Civil Engineering, Osaka Sangyo University)
  • 오상호 (한국해양연구원 연안개발연구본부 항만.연안공간연구사업단) ;
  • 서경덕 (서울대학교 지구환경시스템공학부 및 공학연구소) ;
  • Published : 2007.02.28

Abstract

The results of experimental investigation of coherent structures beneath wind-generated waves in deep water are presented. Vorticity fields of deepwater wind waves were visualized by analyzing the velocity fields obtained by PIV measurements under different wind and fetch conditions. In addition, spatio-temporal evolution of the coherent structures and subsequent changes in vertical profiles of the instantaneous vorticity were qualitatively examined. It was found that a coherent structure is formed right underneath the wave crest and traveled in phase with the surface wave. The direction of rotation of the coherent structure was contrary to the wave orbital motion when wind speed is less than 10 m/s, while was same as the wave orbital motion when wind speed is approximately 13 m/s and wave breaking occurs at the wave crest. In the near-surface region, complex vortex-vortex interactions were observed according to the traveling of the coherent structure. In contrast, coherent structures far below the water surface changed little due to weak influence of orbital motion by the surface waves.

이 연구에서는 심해 풍파 아래에서의 응집구조(coherent structures)에 대한 실험실 실험 결과를 제시하였다. 풍속과 취송거리가 서로 다른 실험 조건에서 입자화상유속계를 이용하여 취득된 심해 풍파의 속도장으로부터 와도장을 가시화하고 응집구조가 시 공간적으로 변천하는 양상 및 그에 따른 와도의 연직 분포 변화를 정성적으로 분석하였다. 파봉 아래에서는 파와 같은 위상으로 함께 진행하는 응집구조가 존재함을 확인하였다. 이 응집구조의 회전 방향은 바람이 10 m/s 이하인 실험 조건에서는 파 내부의 입자 궤도 운동과 반대 방향인 반면, 바람의 세기가 약 13 m/s이고 파봉 근처에서 쇄파가 발생하는 경우에는 같은 방향이었다. 수면 근처에서는 응집구조의 진행에 따른 복잡한 소용돌이 상호 작용이 나타나는 반면, 수면으로부터 깊은 수심에서는 파 궤도 운동의 영향이 미미하여 응집구조의 시 공간적 변화가 거의 없었다.

Keywords

References

  1. Bonnet, J.-P. and Delville, J. (2001). Review of coherent structures in turbulent free shear flows and their possible influence on computational methods. Flow Turb. Combust., 66, 333-353 https://doi.org/10.1023/A:1013518716755
  2. Drennan, W.M., Donelan, M.A., Terray, E.A. and Katsaros, K.B. (1996). Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26, 808-905 https://doi.org/10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2
  3. Ebuchi, N., Kawamura, H. and Toba, Y. (1987). Fine structure of laboratory wind-wave surfaces studied using an optical method. Bdry. Layer Meterol., 39, 133-151 https://doi.org/10.1007/BF00121871
  4. Hussain, A.K.M.F. and Hayakawa, M. (1987). Eduction of large-scale organized structures in a turbulent plane wake. J. Fluid Mech., 180, 193-229 https://doi.org/10.1017/S0022112087001782
  5. Hwang, P.A., Xu, D. and Wu, J. (1989). Breaking of wind-generated waves: measurements and characteristics. J. Fluid Mech., 202, 177-200 https://doi.org/10.1017/S002211208900114X
  6. Jessup, A.T., Zappa, C.J. and Yeh, H. (1997). Defining and quantifying microscale wave breaking with infrared imagery. J. Geophys. Res., 102, 23145-23153 https://doi.org/10.1029/97JC01449
  7. Longuet-Higgins, M.S. (1963). Capillary rollers and bores. J. Fluid Mech., 240, 659-679 https://doi.org/10.1017/S0022112092000259
  8. Melville, W.L., Shear, R. and Veron, F. (1998). Laboratory measurements of the generation and evolution of Langmuir circulations. J. Fluid Mech., 364, 31-58 https://doi.org/10.1017/S0022112098001098
  9. Oh, S.-H., Mizutani, N., Suh, K.-D. and Hashimoto, N. (2005). Experimental investigation of breaking criteria of deepwater wind waves under strong wind action. Appl. Oc. Res., 27, 235-250 https://doi.org/10.1016/j.apor.2006.01.001
  10. Robinson, S.K. (1991). Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech., 23, 601-639 https://doi.org/10.1146/annurev.fl.23.010191.003125
  11. Siddiqui, M.H.K. (2001). Simultaneous particle image velocimetry and infrared imagery of microscale breaking waves. Phys. Fluids, 13(7), 1891-1903 https://doi.org/10.1063/1.1375144
  12. Siddiqui, M.H.K., Loewen, M.R., Asher, W.E. and Jessup, A.T. (2004). Coherent structures beneath wind waves and their influence on air-water gas transfer. J. Geophys. Res., 109, C03024
  13. Soloviev, A. and Lukas, R. (2003). Observation of waveenhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep Sea Res., 50, 371-395 https://doi.org/10.1016/S0967-0637(03)00004-9
  14. Thorpe, S.A. (2004). Langmuir circulation. Annu. Rev. Fluid Mech., 36, 55-79 https://doi.org/10.1146/annurev.fluid.36.052203.071431
  15. Westerweel, J. (1994). Efficient detection of spurious vectors in particle image velocimetry data. Exp. Fluids, 16, 236-247
  16. Xu, D., Hwang, P.A. and Wu, J. (1986). Breaking of wind-generated waves. J. Phys. Oceanogr., 16, 2172-2178 https://doi.org/10.1175/1520-0485(1986)016<2172:BOWGW>2.0.CO;2
  17. Zappa, C.J., Asher, W.E. and Jessup, A.T. (2001). Microscale wave breaking and air-water gas transfer. J. Geophys. Res., 106, 9385-9391 https://doi.org/10.1029/2000JC000262
  18. Zhang, X. and Cox, C.S. (1999). Vortical motions under short wind waves. The Wind-Driven Air-Sea Interface: Electromagnetic and Acoustic Sensing, Wave Dynamics and Turbulent Fluxes. Ed. Banner, M. L., Univ. New South Wales, 277-284