DOI QR코드

DOI QR Code

Retrieval and Accuracy Evaluation of Horizontal Winds from Doppler Lidars During ICE-POP 2018

도플러 라이다를 이용한 ICE-POP 2018 기간 수평바람 연직 프로파일 산출 및 정확도 평가

  • Kim, Kwonil (Department of Atmospheric Sciences, Center for Atmospheric REmote Sensing (CARE), Kyungpook National University) ;
  • Lyu, Geunsu (Department of Atmospheric Sciences, Center for Atmospheric REmote Sensing (CARE), Kyungpook National University) ;
  • Baek, SeungWoo (Department of Atmospheric Sciences, Center for Atmospheric REmote Sensing (CARE), Kyungpook National University) ;
  • Shin, Kyuhee (Department of Atmospheric Sciences, Center for Atmospheric REmote Sensing (CARE), Kyungpook National University) ;
  • Lee, GyuWon (Department of Atmospheric Sciences, Center for Atmospheric REmote Sensing (CARE), Kyungpook National University)
  • 김권일 (경북대학교 대기과학과 대기원격탐사연구소) ;
  • 류근수 (경북대학교 대기과학과 대기원격탐사연구소) ;
  • 백승우 (경북대학교 대기과학과 대기원격탐사연구소) ;
  • 신규희 (경북대학교 대기과학과 대기원격탐사연구소) ;
  • 이규원 (경북대학교 대기과학과 대기원격탐사연구소)
  • Received : 2022.01.26
  • Accepted : 2022.04.19
  • Published : 2022.06.30

Abstract

This study aims to evaluate the accuracy of retrieved horizontal winds with different quality control methods from three Doppler lidars deployed over the complex terrain during the PyeongChang 2018 Olympic and Paralympic games. To retrieve the accurate wind profile, this study also proposes two quality control methods to distinguish between meteorological signals and noises in the Doppler velocity field, which can be broadly applied to different Doppler lidars. We evaluated the accuracy of retrieved winds with the wind measurements from the nearby or collocated rawinsondes. The retrieved wind speed and direction show a good agreement with rawinsonde with a correlation coefficient larger than 0.9. This study minimized the sampling error in the wind evaluation and estimation, and found that the accuracy of retrieved winds can reach ~0.6 m s-1 and 3° in the quasi-homogeneous wind condition. We expect that the retrieved horizontal winds can be used in the high-resolution analysis of the horizontal winds and provide an accurate wind profile for model evaluation or data assimilation purposes.

Keywords

Acknowledgement

이 논문은 2018학년도 경북대학교 국립대학육성사업 지원비에 의하여 연구되었습니다. DGW와 GWU 도플러 라이다를 지원해주신 것에 대해 Environment and Climate Change Canada의 Stella Melo 박사님, Daniel Michelson 박사님, Paul Joe 박사님께 감사드립니다. 또한, 세계기상기구 연구개발사업과 예보시범사업의 일환인 평창국제공동연구프로젝트(ICE-POP 2018)를 주최한 기상청과 모든 참가자분들께 깊은 감사의 말씀을 드립니다.

References

  1. Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteorol., 7, 105-113, doi:10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.
  2. Chan, P. W., 2017: Severe wind shear at Hong Kong International Airport: climatology and case studies. Meteorol. Appl., 24, 397-403, doi:10.1002/met.1637.
  3. Dabas, A. M., P. Drobinski, and P. H. Flamant, 1999: Adaptive filters for frequency estimate of heterodyne Doppler lidar returns: Recursive implementation and quality control. J. Atmos. Ocean. Technol., 16, 361-372, doi:10.1175/1520-0426(1999)016<0361:afffeo>2.0.co;2.
  4. Dai, L., J. Xin, H. Zuo, Y. Ma, L. Zhang, X. Wu, Y. Ma, D. Jia, and F. Wu, 2020: Multilevel validation of doppler wind lidar by the 325 m meteorological tower in the planetary boundary layer of beijing. Atmosphere, 11, 1051, doi:10.3390/atmos11101051.
  5. Drew, D. R., J. F. Barlow, and S. E. Lane, 2013: Observations of wind speed profiles over Greater London, UK, using a Doppler lidar. J. Wind Eng. Ind. Aerodyn., 121, 98-105, doi:10.1016/j.jweia.2013.07.019.
  6. Frehlich, R. G., and M. J. Yadlowsky, 1994: Performance of mean-frequency estimators for Doppler radar and lidar. J. Atmos. Ocean. Technol., 11, 1217-1230, doi:10.1175/1520-0426(1994)011<1217:POMFEF>2.0.CO;2.
  7. Gao, J., K. K. Droegemeier, J. Gong, and Q. Xu, 2004: A method for retrieving mean horizontal wind profiles from single-Doppler radar observations contaminated by aliasing. Mon. Wea. Rev., 132, 1399-1409, doi:10.1175/1520-0493-132.6.1399.
  8. Hwang, H., S.-H. Eun, B.-G. Kim, S.-J. Park, and G.-M. Park, 2020: Occurrence characteristics of sea breeze in the Gangneung region for 2009~2018. Atmosphere, 30, 221-236, doi:10.14191/ATMOS.2020.30.3.221 (in Korean with English abstract).
  9. Jammalamadaka, S. R., and A. SenGupta, 2001: Topics in circular statistics. World Scientific, 336 p.
  10. Keum, W.-H., S.-H. Lee, D.-I. Lee, S.-S. Lee, and Y.-H. Kim, 2021: Evaluation and improvement of the KMAPP surface wind speed prediction over complex terrain areas. Atmosphere, 31, 85-100, doi:10.14191/Atmos.2021.31.1.085 (in Korean with English abstract).
  11. Kim, D.-Y., H.-S. Jeong, Y.-H. Kim, and B.-J. Kim, 2018: Comparative assessment of wind resources between west offshore and onshore regions in Korea. Atmosphere, 28, 1-13, doi:10.14191/Atmos.2018.28.1.001 (in Korean with English abstract).
  12. Kopp, F., S. Rahm, and I. Smalikho, 2004: Characterization of aircraft wake vortices by 2-㎛ pulsed Doppler lidar. J. Atmos. Ocean. Technol., 21, 194-206, doi:10.1175/1520-0426(2004)021<0194:COAWVB>2.0.CO;2.
  13. Liu, Z., J. F. Barlow, P.-W. Chan, J. C. H. Fung, Y. Li, C. Ren, H. W. L. Mak, and E. Ng, 2019: A review of progress and applications of pulsed Doppler wind LiDARs. Remote Sens., 11, 2522, doi:10.3390/rs11212522.
  14. Mariani, Z., R. Crawford, B. Casati, and F. Lemay, 2020: A multi-year evaluation of Doppler lidar wind-profile observations in the Arctic. Remote Sens., 12, 323, doi:10.3390/rs12020323.
  15. Park, M.-S., S.-H. Park, J.-H. Chae, M.-H. Choi, Y. Song, M. Kang, and J.-W. Roh, 2017: High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea. Atmos. Meas. Tech., 10, 1575-1594, doi:10.5194/amt-10-1575-2017.
  16. Park, M.-S., and M.-H. Choi, 2016: Development of a quality check algorithm for the WISE pulsed Doppler wind lidar. Atmosphere, 26, 461-471, doi:10.14191/atmos.2016.26.3.461 (in Korean with English abstract).
  17. Paschke, E., R. Leinweber, and V. Lehmann, 2015: An assessment of the performance of a 1.5 ㎛ Doppler lidar for operational vertical wind profiling based on a 1-year trial. Atmos. Meas. Tech., 8, 2251-2266, doi:10.5194/amt-8-2251-2015.
  18. Pearson, G., F. Davies, and C. Collier, 2009: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Ocean. Technol., 26, 240-250, doi:10.1175/2008JTECHA1128.1.
  19. Pichugina, Y. L., R. M. Banta, W. A. Brewer, S. P. Sandberg, and R. M. Hardesty, 2012: Doppler lidar-based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications. J. Appl. Meteorol. Climatol., 51, 327-349, doi:10.1175/JAMC-D-11-040.1.
  20. Risan, A., J. A. Lund, C.-Y. Chang, and L. Saetran, 2018: Wind in complex terrain-Lidar measurements for evaluation of CFD simulations. Remote Sens., 10, 59, doi:10.3390/rs10010059.
  21. Sathe, A., J. Mann, N. Vasiljevic, and G. Lea, 2015: A sixbeam method to measure turbulence statistics using ground-based wind lidars. Atmos. Meas. Tech., 8, 729-740, doi:10.5194/amt-8-729-2015.
  22. Shun, C. M., and P. W. Chan, 2008: Applications of an infrared Doppler lidar in detection of wind shear. J. Atmos. Ocean. Technol., 25, 637-655, doi:10.1175/2007JTECHA1057.1.
  23. Smalikho, I. N., V. A. Banakh, F. Holzapfel, and S. Rahm, 2015: Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar. Opt. Express, 23, A1194-A1207, doi:10.1364/oe.23.0a1194.
  24. Tsai, C.-L. L., K. Kim, Y.-C. Liou, G. Lee, and C.-K. Yu, 2018: Impacts of topography on airflow and precipitation in the Pyeongchang area seen from multiple-Doppler radar observations. Mon. Wea. Rev., 146, 3401-3424, doi:10.1175/MWR-D-17-0394.1.
  25. Vakkari, V., A. J. Manninen, E. J. O'Connor, J. H. Schween, P. G. Van Zyl, and E. Marinou, 2019: A novel post-processing algorithm for Halo Doppler lidars. Atmos. Meas. Tech., 12, 839-852, doi:10.5194/amt-12-839-2019.
  26. Weissmann, M., R. H. Langland, C. Cardinali, P. M. Pauley, and S. Rahm, 2012: Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts. Q. J. R. Meteorol. Soc., 138, 118-130, doi:10.1002/qj.896.
  27. WMO, 2022: Observing Systems Capability Analysis and Review tool. [Available online at https://space.oscar.wmo.int/variables/view/wind_horizontal] (Accessed 18 Jan 2022).
  28. Yamartino, R. J., 1984: A comparison of several "single-pass" estimators of the standard deviation of wind direction. J. Clim. Appl. Meteorol., 23, 1362-1366. https://doi.org/10.1175/1520-0450(1984)023<1362:ACOSPE>2.0.CO;2