DOI QR코드

DOI QR Code

An Experimental Study for Efficient Design Parameters of a Wind Power Tower

풍력타워의 효율적인 설계변수에 대한 실험적 연구

  • Cho, Soo-Yong (Dept. of Aerospace Engr. (ReCAPT), Gyeongsang National University) ;
  • Choi, Sang-Kyu (Dept. of System Reliability, Korea Institute of Machinery and Materials) ;
  • Kim, Jin-Gyun (Dept. of System Reliability, Korea Institute of Machinery and Materials) ;
  • Cho, Chong-Hyun (Technology R&D Center, Suntech LtD.)
  • Received : 2017.06.01
  • Accepted : 2018.01.04
  • Published : 2018.02.01

Abstract

Wind power tower (WPT) has been used to augment the performance of vertical axis wind turbine (VAWT). However, the performance of the WPT depends on several design parameters, such as inner and outer radius, or number of guide walls. Therefore, an experimental study was conducted to investigate efficient design parameters on the WPT. A wind tunnel was utilized and its test section dimension was 2m height and 2.2m width. One story model of the WPT was manufactured with seven guide walls and a VAWT was installed within the WPT. Three different sizes of guide walls were applied to test with various design parameters. The power coefficients were measured along the azimuthal direction in a state of equal inlet velocity in order to compare its performance relatively. The experimental results showed that the gap between the inner radius of the WPT and the rotating radius of the VAWT was a major parameter to improve the performance of VAWT within the WPT.

풍력타워는 수직형 풍력터빈의 성능을 향상하기 위하여 사용되어진다. 하지만 풍력타워의 성능은 내부반경, 외부반경, 안내벽의 개수 등의 설계변수에 의하여 좌우된다. 따라서 본 연구에서는 풍력타워의 효율적인 설계변수를 찾기 위하여 실험적인 연구를 수행하였다. 실험에 사용된 풍동의 시험부는 높이 2 m, 폭 2.2 m이며, 7개의 안내벽을 가진 풍력타워의 한 층을 모델로 제작하고, 그 내부에 풍력터빈을 설치하였다. 다양한 설계변수에 대하여 실험을 하기 위하여 세 가지 종류의 안내벽을 사용하였다. 상대적인 성능평가를 위하여 동일한 입구속도에서 풍력타워를 원주방향으로 회전이동하여 출력계수를 측정하였다. 실험의 결과에서 풍력타워의 내부반경과 풍력터빈의 회전반경과의 간격이 풍력터빈의 성능을 향상하는데 가장 큰 영향을 미치는 변수임을 보였다.

Keywords

References

  1. Tangler, J. L. and Somers, D. M., "NREL Airfoil Families for HAWTs," Proceeding Windpower '95, Washington D.C., 1995, pp.117-123.
  2. Bjork, A., "Coordinates and Calculations for the FFA-W1-xxx, FFA-W2-xxx and FFA-W3-xxx Series of Airfoils for Horizontal Axis Wind Turbines," FFA TN 1990-15, 1990, Stockholm, Sweden.
  3. Fuglsang, P. and Bak, C., "Design and Verification of the New Riso-A1 Airfoil Family for Wind Turbines," 2001, AIAA-2001-0028.
  4. Kang, S. H. and Ryu, K. W., "A Comparison Study on Aerodynamics Validation in Design Process of an Airfoil for Megawatt-Class Wind Turbine," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 11, 2016, pp.933-940. https://doi.org/10.5139/JKSAS.2016.44.11.933
  5. Colley, G., Mishra, R., Rao, H. V. and Woolhead, R., "Computational Flow Field Analysis of a Vertical Axis Wind Turbine," 2011, ICREPQ'11.
  6. Park, J., Lee, S., Sabourin, T. and Park, K., "A Novel Vertical Axis Wind Turbine for Distributed & Utility Deployment," 2007, Ontario Sustainable Energy Association.
  7. Kim, B. K., Kim, H. Y., Song, W. S., Lee, S., Nam, S. K., and Kim, S. M., "An Experimental Study on the Performance of the Vertical-Axis Wind Turbine," 2007, Journal of Fluid Machinery, Vol. 10, pp.17-24.
  8. Takao, M., Maeda, T., Kamada, Y., Oki, M. and Kuma, H., "A Straight-Bladed Vertical Axis Wind Turbine with a Directed Guide Vane Row," Journal of Fluid Science and Technology, 2008, Vol. 3, pp.379-386. https://doi.org/10.1299/jfst.3.379
  9. Isensee, G. M. and Hayder A. R., "Modeling and Analysis of Diffuser Augmented Wind Turbine", International Journal of Energy Science, 2012, Vol. 2, pp.84-88.
  10. Phillips, D. G., Flay, R. G. J., Nash, T. A. and Ipena, M, "Aerodynamic Analysis and Monitoring of the Vortec 7 Diffuser-Augmented Wind Turbine," EMCh Transactions, Vol. 26, No. 1, 1999.
  11. Phillips, D. G., Richards, P. J. and Flay, R. G. J., "CFD Modelling and the Development of the Diffuser Augmented Wind Turbine," Wind and Structures, Vol. 5, 2002, pp.267-276. https://doi.org/10.12989/was.2002.5.2_3_4.267
  12. Nobile, R., Vahdati, M., Barlow, J. F. and Mewburn-Crook, A., "Unsteady Flow Simulation of a Vertical Axis Wind Turbine: a Two-Dimensional Study," Engineering Doctor Conference, 2013, 2nd July.
  13. Chong, W. T., Poh, S. C., Fazlizan, A. and Pan, K. C., "Vertical Axis Wind Turbine with Omni-Directional-Guide-Vane for Urban High Rise Application," Journal of Central South University of Technology, Vol. 19, 2012, pp.721-732. https://doi.org/10.1007/s11771-012-1063-9
  14. Chen, L., Ponta, F. L. and Lago, L. I., "Perspectives on Innovative Concepts in Wind-Power Generation," Energy for Sustainable Development, Vol. 15. 2011, pp.398-410.
  15. Allaei, D. and Andreopoulos, Y., "Invelox: Description of a New Concept in Wind Power and its Performance Evaluation," Energy, Vol. 69, 2014, pp.336-344. https://doi.org/10.1016/j.energy.2014.03.021
  16. Sanyer, W. E., "The Development of a Wind Turbine for Residential Use," MS Thesis, 2011, Raleigh Univ.
  17. Cho, S. Y., Rim, C. W., Choi, S. K., Kim, J. K., Nam, J. S., and Park, S. G., "Numerical Analysis on the Performance of Vertical Axis Wind Turbine Affected by the Configuration of the Wind Power Tower," New and Renewable Energy, Vol. 11, 2015, pp.1-12.