• Title/Summary/Keyword: wild rice

Search Result 302, Processing Time 0.028 seconds

Microbiological Characteristics of Wild Yeast Strain Pichia anomala Y197-13 for Brewing Makgeolli

  • Kim, Hye Ryun;Kim, Jae-Ho;Bai, Dong-Hoon;Ahn, Byung Hak
    • Mycobiology
    • /
    • v.41 no.3
    • /
    • pp.139-144
    • /
    • 2013
  • Makgeolli is a traditional cloudy-white Korean rice wine with an alcohol content of 6~7%. The present study investigated the morphological characteristics, carbon-utilizing ability, fatty acid composition, alcohol resistance, glucose tolerance, and flocculence of Saccharomyces cerevisiae Y98-5 and Pichia anomala Y197-13, non-S. cerevisiae isolated from Nuruk, which is used in brewing Makgeolli. Similar morphological characteristics were observed for both isolated wild yeast strains; and the carbon source assimilation of Y197-13 differed from that of other P. anomala strains. Strain Y197-13 was negative for D-trehalose, mannitol, arbutin, I-erythritol, and succinic acid. The major cellular fatty acids of strain Y197-13 included C18:2n6c (33.94%), C18:1n9c (26.97%) and C16:0 (20.57%). Strain Y197-13 was Crabtree-negative, with 60% cell viability at 12% (v/v) ethanol. The flocculation level of strain Y197-13 was 8.38%, resulting in its classification as a non-flocculent yeast.

Genome-wide Screening to Identify Responsive Regulators Involved in the Virulence of Xanthomonas oryzae pv. oryzae

  • Han, Sang-Wook;Lee, Mi-Ae;Yoo, Youngchul;Cho, Man-Ho;Lee, Sang-Won
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • Two-component systems (TCSs) are critical to the pathogenesis of Xanthomonas oryzae pv. oryzae (Xoo). We mutated 55 of 62 genes annotated as responsive regulators (RRs) of TCSs in the genome of Xoo strain PXO99A and identified 9 genes involved in Xoo virulence. Four (rpfG, hrpG, stoS, and detR) of the 9 genes were previously reported as key regulators of Xoo virulence and the other 5 have not been characterized. Lesion lengths on rice leaves inoculated with the mutants were shorter than those of the wild type and were significantly restored with gene complementation. The population density of the 5 mutants in planta was smaller than that of PXO99A at 14 days after inoculation, but the growth curves of the mutants in rich medium were similar to those of the wild type. These newly reported RR genes will facilitate studies on the function of TCSs and of the integrated regulation of TCSs for Xoo pathogenesis.

Identification of Major Blast Resistance Genes in Korean Rice Varieties(Oryza sativa L.) Using Molecular Markers

  • Cho, Young-Chan;Kwon, Soon-Wook;Choi, Im-Soo;Lee, Sang-Kyu;Jeon, Jong-Seong;Oh, Myung-Kyu;Roh, Jae-Hwan;Hwang, Hung-Goo;Yang, Sae-June;Kim, Yeon-Gyu
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.265-276
    • /
    • 2007
  • The 13 major blast resistance(R) genes against Magnaporthe grisea were screened in a number of Korean rice varieties using molecular markers. Of the 98 rice varieties tested, 28 were found to contain the Pia gene originating from Japanese japonica rice genotypes. The Pib gene from BL1 and BL7 was incorporated into 39 Korean japonica varieties, whereas this same gene from the IRRI-bred indica varieties was detected in all Tongil-type varieties. We also found that 17 of the japonica varieties contained the Pii gene. The Pii gene in Korean rice varieties originates from the Korean japonica variety Nongbaeg, and Japanese japonica varieties Hitomebore, Inabawase, and Todorokiwase. The Pi5 gene, which clusters with Pii on chromosome 9, was identified only in Taebaeg. Thirty-four varieties were found to contain alleles of the resistance gene Pita or Pita-2. The Pita gene in japonica varieties was found to be inherited from the Japanese japonica genotype Shimokita, and the Pita-2 gene was from Fuji280 and Sadominori. Seventeen japonica and one Tongil-type varieties contained the Piz gene, which in the japonica varieties originates from Fukuhikari and 54BC-68. The Piz-t gene contained in three Tongil-type varieties was derived from IRRI-bred indica rice varieties. The Pi9(t) gene locus that is present in Korean japonica and Tongil-type varieties was not inherited from the original Pi9 gene from wild rice Oryza minuta. The Pik-multiple allele genes Pik, Pik-m, and Pik-p were identified in 24 of the varieties tested. In addition, the Pit gene inherited from the indica rice K59 strain was not found in any of the Korean japonica or Tongil-type varieties tested.

  • PDF

Changes of Monosaccharides Contents in Hydrolysates of Decomposing Plant Residues (식물성(植物性) 유기물질(有機物質)의 부숙과정중(腐熟過程中) 단당류(單糖類)의 함량(含量) 변화(變化))

  • Kim, Jeong-Je;Jang, Yong-Seon;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.21-25
    • /
    • 1990
  • The amounts of monosaccharides in acid hydrolysates of decomposing plant residues under laboratory conditions were determined. Straw of cereal rice and barley, wild grass cutting, and litters of deciduous and coniferous forest trees were treated to decompose for 90 days. Samples for the analysis of mono-saccharides were taken at 3 different periods of incubation. 1. Fractions of monosaccahrides in plant residues steadily decreased with the time of decomposition. In some samples there appeared an intermediate stages where the fractions reached the highest level. 2. Decomposition of barley straw occured at a faster rate than that of rice straw, and so did the decomposition of deciduous litter than that of coniferous litter. 3. Cereal crop residues of rice and barley were richer in monosaccharides than residues of wild grass cutting and forest litters. 4. Distiction between monosaccharides of plant origin and those of microbial origin was not possible to make in this study. 5. Glucose was the predominent monosaccharide and fucose was the monosaccharide contained in the smallest amount. No measurable ribose was detected from any sample. 6. The relative proportion of galactose in creased with the time of incubation. 7. In general, the proportion of fucose decreased with time and so did that of rhamnose, rhamnose of rice straw residue being the exception. 8. The orders of abundance of monosaccharides after decomposition of 90 days were as the following: in rice straw; glucose > xylose > arabinose > galactose > rhamnose > mannose > fucose, in barley straw; glucose > xylose > arabinose > galactose> mannose > rhamnose > fucose, in wild grass cutting; glucose > xylose > galactose arabinose> rhamnose mannose > fucose, in deciduous litter; glucose > arabinose > xylose galactose > mannose > rhamnose = fucose, and in coniferous litter; glucose > xylose > galactose > arabinose mannose > rhamnose > fucose.

  • PDF

1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 Facilitates the Growth of Rice in the Presence of Salt or Heavy Metals

  • Han, Yunlei;Wang, Rui;Yang, Zhirong;Zhan, Yuhua;Ma, Yao;Ping, Shuzhen;Zhang, Liwen;Lin, Min;Yan, Yongliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1119-1128
    • /
    • 2015
  • 1-Aminocyclopropane-1-carboxylate (ACC) deaminase, which is encoded by some bacteria, can reduce the amount of ethylene, a root elongation inhibitor, and stimulate the growth of plants under various environmental stresses. The presence of ACC deaminase activity and the regulation of ACC in several rhizospheric bacteria have been reported. The nitrogen-fixing Pseudomonas stutzeri A1501 is capable of endophytic association with rice plants and promotes the growth of rice. However, the functional identification of ACC deaminase has not been performed. In this study, the proposed effect of ACC deaminase in P. stutzeri A1501 was investigated. Genome mining showed that P. stutzeri A1501 carries a single gene encoding ACC deaminase, designated acdS. The acdS mutant was devoid of ACC deaminase activity and was less resistant to NaCl and NiCl2 compared with the wild-type. Furthermore, inactivation of acdS greatly impaired its nitrogenase activity under salt stress conditions. It was also observed that mutation of the acdS gene led to loss of the ability to promote the growth of rice under salt or heavy metal stress. Taken together, this study illustrates the essential role of ACC deaminase, not only in enhancing the salt or heavy metal tolerance of bacteria but also in improving the growth of plants, and provides a theoretical basis for studying the interaction between plant growth-promoting rhizobacteria and plants.

The Roles of Two hfq Genes in the Virulence and Stress Resistance of Burkholderia glumae

  • Kim, Jieun;Mannaa, Mohamed;Kim, Namgyu;Lee, Chaeyeong;Kim, Juyun;Park, Jungwook;Lee, Hyun-Hee;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.412-425
    • /
    • 2018
  • The Hfq protein is a global small RNA chaperone that interacts with regulatory bacterial small RNAs (sRNA) and plays a role in the post-transcriptional regulation of gene expression. The roles of Hfq in the virulence and pathogenicity of several infectious bacteria have been reported. This study was conducted to elucidate the functions of two hfq genes in Burkholderia glumae, a causal agent of rice grain rot. Therefore, mutant strains of the rice-pathogenic B. glumae BGR1, targeting each of the two hfq genes, as well as the double defective mutant were constructed and tested for several phenotypic characteristics. Bacterial swarming motility, toxoflavin production, virulence in rice, siderophore production, sensitivity to $H_2O_2$, and lipase production assays were conducted to compare the mutant strains with the wild-type B. glumae BGR1 and complementation strains. The hfq1 gene showed more influence on bacterial motility and toxoflavin production than the hfq2 gene. Both genes were involved in the full virulence of B. glumae in rice plants. Other biochemical characteristics such as siderophore production and sensitivity to $H_2O_2$ induced oxidative stress were also found to be regulated by the hfq1 gene. However, lipase activity was shown to be unassociated with both tested genes. To the best of our knowledge, this is the first study to elucidate the functions of two hfq genes in B. glumae. Identification of virulence-related factors in B. glumae will facilitate the development of efficient control measures.

A PAS-Containing Histidine Kinase is Required for Conidiation, Appressorium Formation, and Disease Development in the Rice Blast Fungus, Magnaporthe oryzae

  • Shin, Jong-Hwan;Gumilang, Adiyantara;Kim, Moon-Jong;Han, Joon-Hee;Kim, Kyoung Su
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.473-482
    • /
    • 2019
  • Rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most important diseases in rice production. PAS (period circadian protein, aryl hydrocarbon receptor nuclear translocator protein, single-minded protein) domains are known to be involved in signal transduction pathways, but their functional roles have not been well studied in fungi. In this study, targeted gene deletion was carried out to investigate the functional roles of the PAS-containing gene MoPAS1 (MGG_02665) in M. oryzae. The deletion mutant ΔMopas1 exhibited easily wettable mycelia, reduced conidiation, and defects in appressorium formation and disease development compared to the wild type and complemented transformant. Exogenous cAMP restored appressorium formation in ΔMopas1, but the shape of the restored appressorium was irregular, indicating that MoPAS1 is involved in sensing the hydrophobic surface. To examine the expression and localization of MoPAS1 in M. oryzae during appressorium development and plant infection, we constructed a MoPAS1:GFP fusion construct. MoPAS1:GFP was observed in conidia and germ tubes at 0 and 2 h post-infection (hpi) on hydrophobic cover slips. By 8 hpi, most of the GFP signal was observed in the appressoria. During invasive growth in host cells, MoPAS1:GFP was found to be fully expressed in not only the appressoria but also invasive hyphae, suggesting that MoPAS may contribute to disease development in host cells. These results expand our knowledge of the roles of PAS-containing regulatory genes in the plant-pathogenic fungus M. oryzae.

Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice (OsCHLH) seedlings

  • Goh, Chang-Hyo;Satoh, Kouji;Kikuchi, Shoshi;Kim, Seong-Cheol;Ko, Suk-Min;Kang, Hong-Gyu;Jeon, Jong-Seong;Kim, Cheol-Soo;Park, Youn-Il
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.281-291
    • /
    • 2010
  • The rice CHLH gene encodes the $Mg^{2+}$-chelatase H subunit, which is involved in chlorophyll biosynthesis. Growth of the chlorophyll-deficient oschlh mutant is supported by mitochondrial activity. In this study, we investigated the activity of mitochondrial respiration in the illuminated leaves during oschlh seedling development. Growth of mutant plants was enhanced in the presence of 3% sucrose, which may be used by mitochondria to meet cellular energy requirements. ATP content in these mutants was, however, significantly lowered in light conditions. Low cytosolic levels of NADH in illuminated oschlh mutant leaves further indicated the inhibition of mitochondrial metabolism. This down-regulation was particularly evident for oxidative stressresponsive genes in the mutant under light conditions. Hydrogen peroxide levels were higher in oschlh mutant leaves than in wild-type leaves; this increase was largely caused by the impairment of the expression of the antioxidant genes, such as OsAPXl, OsRACl, and OsAOXc in knockout plants. Moreover, treatment of mesophyll protoplasts with ascorbic acid or catalase recovered ATP content in the mutants. Taken together, these results suggest that the light-mediated inhibition of mitochondrial activity leads to stunted growth of CHLH rice seedlings.

Survey on Food Preference in Gyeongnam Area (경남지역을 중심으로 한 한국인의 식품 기호도에 관한 조사연구)

  • 이주희
    • Korean journal of food and cookery science
    • /
    • v.15 no.4
    • /
    • pp.338-352
    • /
    • 1999
  • This research was carried to investigate the food preference of students, from elementary school, middle school, high school, university and industrial workers on Jinju, Sacheon and Jinyang by age and sex. The results were obtained as follows. In case of rice as the stationary food, plain white boiled rice showed the highest preference among all the groups. Most of groups liked most of one-dish meals such as kimbab, fried rice with kimchi, dumplings and bibimbab, especially the elementary school students and middle school students. On the other hand, high percentage of industrial workers disliked the western food such as pizza, hamburger and sphagetti. Most of subjects liked jajangmun, nangmun and bibimgooksu as noodles. As the side dishes generally they prefer the soup to stew. Male prefer the soup with beef and female prefer soup with vegetables. Stew with kimchi and stew with soybean paste showed high preference among most of groups. Most of broil food showed high preference, and students prefer meat to fish as broil cooking materials especially younger students. As a general they liked soybean sprout, spinach and wild sesame leaf as namul cooking method and they liked korean cabbage kimchi, chonggak kimchi, kackdoogi and dongchimi as kimchi. As a dessert subjects liked most of fruits and they liked yoghurt, fruit juice, milk, sikhae and soda as drinks generally. On the other hand snacks such as cooky, candy, cake, corn, rice cake, sweet potato have the lowest percentage preferance as a dessert, but students from elementary schools showed the highest preferance to sweet such as cooky, cake and candy than any other group. These food preferance results showed some nutritional problems especially young age students. They should eat more green-yellow vegetables, liver food and dried small sardine and they should reduce snacks such as candy and cooky and soda drinks. Therefore it is necessary to conduct nutrition education by parents, teachers and dietician together to improve their food habits and their health.

  • PDF

Mapping of the Reduced Culm Number Trait in Rice (Oryza sativa L.) rcn10(t) Mutant

  • Yeo, Un-Sang;Lee, Jong-Hee;Kim, Choon-Song;Jeon, Meong-Gi;Oh, Tae-Yong;Han, Chang-Deok;Shin, Mun-Sik;Oh, Byeong-Geun
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.223-227
    • /
    • 2008
  • In rice, tillering is an important trait determining yield. To study tillering at the agricultural and molecular aspects, we have examined a spontaneous rice mutant that showed reduction in the number of culms. The mutant was derived from a $F^6$ line of the cross of Junambyeo*4 / IR72. It could produce, on average, 4 tillers per hill in the paddy field while wild-type plants usually have 15. Except the reduced culm numbers, they also show pale green phenotypes. The phenotypes of this mutant were co-segregated as the monogenic Mendelian ratio (${\chi}^b=0.002$, p=0.969). In order to locate a gene responsible for the rcn phenotype, the mutant with the japonica genetic background was crossed with Milyang21 of the indica background. Bulked segregant analysis was used for rapid determination of chromosomal location. Three SSR markers (RM551, RM8213, and RM16467) on chromosome 4 were genetically associated with the mutant phenotype. Each of the 217 $F_2$ plants was genotyped with simple sequence length polymorphisms. The data showed that RM16572 on chromosome 4 was the closest marker that showed perfect co-segregation among the $F_2$ population. We suggest the new rcn gene studied here name as $rcn10^t$ because there was no report which exhibit a rcn phenotype with a pleiotropic effect of pale green (chlorophyll deficiency), and mapped at same position on chromosome 4.