1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 Facilitates the Growth of Rice in the Presence of Salt or Heavy Metals |
Han, Yunlei
(Key Laboratory of Bio-resources and Eco-environment Ministry of Education, College of Life Sciences, Sichuan University)
Wang, Rui (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) Yang, Zhirong (Key Laboratory of Bio-resources and Eco-environment Ministry of Education, College of Life Sciences, Sichuan University) Zhan, Yuhua (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) Ma, Yao (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) Ping, Shuzhen (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) Zhang, Liwen (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) Lin, Min (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) Yan, Yongliang (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) |
1 | Brigido C, Nascimento FX, Duan J, Glick BR, Oliveira S. 2013. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea. FEMS Microbiol. Lett. 349: 46-53. |
2 | Burd GI, Dixon DG, Glick BR. 1998. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol. 64: 3663-3668. |
3 | Burd GI, Dixon DG, Glick BR. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46: 237-245. DOI |
4 | Cheng Z, Park E, Glick BR. 2007. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can. J. Microbiol. 53: 912-918. DOI |
5 | Desnoues N, Lin M, Guo X, Ma L, Carreño-Lopez R, Elmerich C. 2003. Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology 149: 2251-2262. DOI |
6 | Adesemoye AO, Obini M, Ugoji EO. 2008. Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz. J. Microbiol. 39: 423-426. DOI |
7 | Adesemoye AO, Ugoji EO. 2009. Evaluating Pseudomonas aeruginosa as plant growth-promoting rhizobacteria in West Africa. Arch. Phytopathol. Plant Protect. 42: 188-200. DOI |
8 | Tewari S, Arora NK. 2014. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr. Microbiol. 69: 484-494. DOI |
9 | Windgassen M, Urban A, Jaeger KE. 2000. Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 193: 201-205. DOI |
10 | Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, et al. 2008. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc. Natl. Acad. Sci. USA 105: 7564-7569. DOI |
11 | Zulueta-Rodriguez R, Cordoba-Matson MV, HernandezMontiel LG, Murillo-Amador B, Rueda-Puente E, Lara L. 2014. Effect of Pseudomonas putida on growth and anthocyanin pigment in two poinsettia (Euphorbia pulcherrima) cultivars. Sci. World J. 2014: 810192. DOI |
12 | Saleem M, Arshad M, Hussain S, Bhatti AS. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34: 635-648. DOI |
13 | Sambrook J, Russell D. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, New York. |
14 | Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73. DOI |
15 | Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. 2014. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. Toxicol. 232: 1-44. |
16 | Sun Y, Cheng Z, Glick BR. 2009. The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol. Lett. 296: 131-136. DOI |
17 | Shen X, Hu H, Peng H, Wang W, Zhang X. 2013. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 14: 271. DOI |
18 | Staskawicz B, Dahlbeck D, Keen N, Napoli C. 1987. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J. Bacteriol. 169: 5789-5794. DOI |
19 | Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, et al. 2002. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J. Bacteriol. 184: 3086-3095. DOI |
20 | Onofre-Lemus J, Hernandez-Lucas I, Girard L, CaballeroMellado J. 2009. ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl. Environ. Microbiol. 75: 6581-6590. DOI |
21 | Penrose DM, Glick BR. 2001. Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Can. J. Microbiol. 47: 368-372. DOI |
22 | Penrose DM, Glick BR. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growthpromoting rhizobacteria. Physiol. Plant. 118: 10-15. DOI |
23 | Preston GM. 2004. Plant perceptions of plant growthpromoting Pseudomonas. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359: 907-918. DOI |
24 | Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA. 2006. Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fert. Soils 42: 267-272. DOI |
25 | Rediers H, Bonnecarrere V, Rainey PB, Hamonts K, Vanderleyden J, De Mot R. 2003. Development and application of a dapB-based in vivo expression technology system to study colonization of rice by the endophytic nitrogen-fixing bacterium Pseudomonas stutzeri A15. Appl. Environ. Microbiol. 69: 6864-6874. DOI |
26 | Reed ML, Glick BR. 2005. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can. J. Microbiol. 51: 1061-1069. DOI |
27 | Rodecap KD, Tingey DT. 1981. Stress ethylene: a bioassay for rhizosphere-applied phytotoxicants. Environ. Monit. Assess. 1: 119-127. DOI |
28 | Gontia-Mishra I, Sasidharan S, Tiwari S. 2014. Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnol. Lett. 36: 889-898. DOI |
29 | Goren R, Siegel SM. 1976. Mercury-induced ethylene formation and abscission in Citrus and Coleus explants. Plant Physiol. 57: 628-631. DOI |
30 | Honma M, Shimomura T. 1978. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric. Biol. Chem. 42: 1825-1831. DOI |
31 | Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, et al. 2009. Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J. Appl. Microbiol. 108: 1471-1484. DOI |
32 | Mayak S, Tirosh T, Glick BR. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 166: 525-530. DOI |
33 | Li J, Ovakim DH, Charles TC, Glick BR. 2000. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr. Microbiol. 41: 101-105. DOI |
34 | Ma W, Guinel FC, Glick BR. 2003. Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl. Environ. Microbiol. 69: 4396-4402. DOI |
35 | Mayak S, Tirosh T, Glick BR. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42: 565-572. DOI |
36 | Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S. 2014. Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol. 118: 683-694. DOI |
37 | Dworkin M, Foster JW. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75: 592-603. |
38 | Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, et al. 2007. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ. Pollut. 147: 540-545. DOI |
39 | Figurski DH, Helinski DR. 1979. Replication of an origincontaining derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76: 1648-1652. DOI |
40 | Glick BR. 2004. Bacterial ACC deaminase and the alleviation of plant stress. Adv. Appl. Microbiol. 56: 291-312. DOI |
41 | Glick BR, Jacobson CB, Schwarze MM, Pasternak J. 1994. 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can. J. Microbiol. 40: 911-915. DOI |
42 | Glick BR. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol. Lett. 251: 1-7. DOI |
43 | Glick BR. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012: 963401. |
44 | Glick BR. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169: 30-39. DOI |
45 | Glick BR, Penrose DM, Li J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190: 63-68. DOI |
46 | Ali S, Charles TC, Glick BR. 2014. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol. Biochem. 80: 160-167. DOI |
47 | Arshad M, Frankenberger Jr WT. 2002. Ethylene: Agricultural Resources and Applications. Springer Science & Business Media. |
48 | Battesti A, Majdalani N, Gottesman S. 2011. The RpoSmediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65: 189-213. DOI |
49 | Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ. 2009. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol. 181: 413-423. DOI |