Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.06.2018.0097

The Roles of Two hfq Genes in the Virulence and Stress Resistance of Burkholderia glumae  

Kim, Jieun (Department of Microbiology, Pusan National University)
Mannaa, Mohamed (Department of Microbiology, Pusan National University)
Kim, Namgyu (Department of Microbiology, Pusan National University)
Lee, Chaeyeong (Department of Microbiology, Pusan National University)
Kim, Juyun (Department of Microbiology, Pusan National University)
Park, Jungwook (Department of Microbiology, Pusan National University)
Lee, Hyun-Hee (Department of Microbiology, Pusan National University)
Seo, Young-Su (Department of Microbiology, Pusan National University)
Publication Information
The Plant Pathology Journal / v.34, no.5, 2018 , pp. 412-425 More about this Journal
Abstract
The Hfq protein is a global small RNA chaperone that interacts with regulatory bacterial small RNAs (sRNA) and plays a role in the post-transcriptional regulation of gene expression. The roles of Hfq in the virulence and pathogenicity of several infectious bacteria have been reported. This study was conducted to elucidate the functions of two hfq genes in Burkholderia glumae, a causal agent of rice grain rot. Therefore, mutant strains of the rice-pathogenic B. glumae BGR1, targeting each of the two hfq genes, as well as the double defective mutant were constructed and tested for several phenotypic characteristics. Bacterial swarming motility, toxoflavin production, virulence in rice, siderophore production, sensitivity to $H_2O_2$, and lipase production assays were conducted to compare the mutant strains with the wild-type B. glumae BGR1 and complementation strains. The hfq1 gene showed more influence on bacterial motility and toxoflavin production than the hfq2 gene. Both genes were involved in the full virulence of B. glumae in rice plants. Other biochemical characteristics such as siderophore production and sensitivity to $H_2O_2$ induced oxidative stress were also found to be regulated by the hfq1 gene. However, lipase activity was shown to be unassociated with both tested genes. To the best of our knowledge, this is the first study to elucidate the functions of two hfq genes in B. glumae. Identification of virulence-related factors in B. glumae will facilitate the development of efficient control measures.
Keywords
Burkholderia glumae; gene functions; hfq gene; RNA chaperone;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56.   DOI
2 Sittka, A., Pfeiffer, V., Tedin, K. and Vogel, J. 2007. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol. Microbiol. 63:193-217.   DOI
3 Sobrero, P. and Valverde, C. 2012. The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit. Rev. Microbiol. 38:276-299.   DOI
4 Sobrero, P., Schluter, J. P., Lanner, U., Schlosser, A., Becker, A. and Valverde, C. 2012. Quantitative proteomic analysis of the Hfq-regulon in Sinorhizobium meliloti 2011. PLoS One 7:e48494.   DOI
5 Sonnleitner, E., Moll, I. and Blasi, U. 2002. Functional replacement of the Escherichia coli hfq gene by the homologue of Pseudomonas aeruginosa. Microbiology 148:883-891.   DOI
6 Sonnleitner, E., Hagens, S., Rosenau, F., Wilhelm, S., Habel, A., Jager, K. E. and Blasi, U. 2003. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb. Pathog. 35:217-228.   DOI
7 Sonnleitner, E. and Blasi, U. 2014. Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa Carbon Catabolite Repression. PLoS Genet. 10:e1004440.   DOI
8 Soper, T. J. and Woodson, S. A. 2008. The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA 14:1907-1917.   DOI
9 Sousa, S. A., Ramos, C. G., Moreira, L. M. and Leitao, J. H. 2010. The hfq gene is required for stress resistance and full virulence of Burkholderia cepacia to the nematode Caenorhabditis elegans. Microbiology 156:896-908.   DOI
10 Trung, H. M., Van, N. V., Vien, N. V., Lam, D. T. and Lien, M. 1993. Occurrence of rice grain rot disease in Vietnam. Int. Rice Res. Notes 18:30.
11 Tsui, H. C., Leung, H. C. and Winkler, M. E. 1994. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol. Microbiol. 13:35-49.   DOI
12 Valentin-Hansen, P., Eriksen, M. and Udesen, C. 2004. The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol. Microbiol. 51:1525-1533.   DOI
13 Morita, T., Maki, K. and Aiba, H. 2005. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev. 19:2176-2186.   DOI
14 Muffler, A., Traulsen, D. D., Fischer, D., Lange, R. and Hengge-Aronis, R. 1997. The RNA-binding protein HF-I plays a global regulatory role which is largely, but not exclusively, due to its role in expression of the sigmaS subunit of RNA polymerase in Escherichia coli. J. Bacteriol. 179:297-300.   DOI
15 Nandakumar, R., Rush, M. C. and Correa, F. 2007. Association of Burkholderia glumae and B. gladioli with panicle blight symptoms on rice in Panama. Plant Dis. 91:767.
16 Nandakumar, R., Shahjahan, A. K. M., Yuan, X. L., Dickstein, E. R., Groth, D. E., Clark, C. A., Cartwright, R. D. and Rush, M. C. 2009. Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Dis. 93:896-905.   DOI
17 Ramos, C. G., da Costa, P. J. P., Doring, G. and Leitao, J. H. 2012. The novel cis-encoded small RNA h2cR is a negative regulator of hfq2 in Burkholderia cenocepacia. PloS one 7:e47896.   DOI
18 Panda, G., Tanwer, P., Ansari, S., Khare, D. and Bhatnagar, R. 2015. Regulation and RNA-binding properties of Hfq RNA chaperones in Bacillus anthracis. Biochim. Biophys. Acta. 1850:1661-1668.   DOI
19 Rai, B., Shrestha, A., Sharma, S. and Joshi, J. 2014. Screening, optimization and process scale up for pilot scale production of lipase by Aspergillus niger. Biomed. Biotechnol. 2:54-59.
20 Ramos, C. G., Sousa, S. A., Grilo, A. M., Feliciano, J. R. and Leitao, J. H. 2011. The second RNA chaperone, Hfq2, is also required for survival under stress and full virulence of Burkholderia cenocepacia J2315. J. Bacteriol. 193:1515-1526.   DOI
21 Salgado-Garrido, J., Bragado-Nilsson, E., Kandels-Lewis, S. and Seraphin, B. 1999. Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin. EMBO J. 18:3451-3462.   DOI
22 Salim, N. N. and Feig, A. L. 2010. An upstream Hfq binding site in the fhlA mRNA leader region facilitates the OxyS-fhlA interaction. PloS one 5:e13028.   DOI
23 Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, NY, USA. 1546 pp.
24 Sato, Z., Koiso, Y., Iwasaki, S., Matsuda, I. and Shirata, A. 1989. Toxins produced by Pseudomonas glumae. Japanese J. Phytopathol. 55:353-356.   DOI
25 Goto, T., Nishiyama, K. and Ohata, K. 1987. Bacteria causing grain rot of rice. Japanese J. Phytopathol. 53:141-149.   DOI
26 Kim, J., Kim, J. G., Kang, Y., Jang, J. Y., Jog, G. J., Lim, J. Y., Kim, S., Suga, H., Nagamatsu, T. and Hwang, I. 2004. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol. Microbiol. 54:921-934.   DOI
27 Hajnsdorf, E. and Regnier, P. 2000. Host factor Hfq of Escherichia coli stimulates elongation of poly(a) tails by poly(a) polymerase I. Proc. Natl. Acad. Sci. U. S. A. 97:1501-1505.   DOI
28 Ham, J. H., Melanson, R. A. and Rush, M. C. 2011. Burkholderia glumae: next major pathogen of rice?. Mol. Plant Pathol. 12:329-339.   DOI
29 Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T. and Hwang, I. 2003. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 87:890-895.   DOI
30 Kalogeraki, V. S. and Winans, S. C. 1997. Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188:69-75.   DOI
31 Kim, J., Kang, Y., Choi, O., Jeong, Y., Jeong, J. E., Lim, J. Y., Kim, M., Moon, J. S., Suga, H. and Hwang, I. 2007. Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae. Mol. Microbiol. 64:165-179.   DOI
32 King, K. Y., Horenstein, J. A. and Caparon, M. G. 2000. Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J. Bacteriol. 182:5290-5299.   DOI
33 Bibova, I., Skopova, K., Masin, J., Cerny, O., Hot, D., Sebo, P. and Vecerek, B. 2013. The RNA Chaperone Hfq Is Required for Virulence of Bordetella pertussis. Infect. Immun. 81:4081-4090.   DOI
34 Lee, J., Park, J., Kim, S., Park, I. and Seo, Y. S. 2016. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. Mol. Plant Pathol. 17:65-76.   DOI
35 Link, T. M., Valentin-Hansen, P. and Brennan, R. G. 2009. Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc. Natl. Acad. Sci. U. S. A. 106:19292-19297.   DOI
36 Mohanty, B. K., Maples, V. F. and Kushner, S. R. 2004. The Smlike protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol. Microbiol. 54:905-920.   DOI
37 Monteiro, C., Papenfort, K., Hentrich, K., Ahmad, I., Le Guyon, S., Reimann, R., Grantcharova, N. and Romling, U. 2012. Hfq and Hfq-dependent small RNAs are major contributors to multicellular development in Salmonella enterica serovar Typhimurium. RNA Biol. 9:489-502.   DOI
38 Ames-Gottfred, N. P., Christie, B. R. and Jordan, D. C. 1989. Use of the Chrome Azurol-S Agar Plate Technique to Differentiate Strains and Field Isolates of Rhizobium-Leguminosarum Biovar Trifolii. Appl. Environ. Microbiol. 55:707-710.
39 Bohn, C., Rigoulay, C. and Bouloc, P. 2007. No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol. 7:10.   DOI
40 Chao, Y. and Vogel, J. 2010. The role of Hfq in bacterial pathogens. Curr. Opin. Microbiol. 13:24-33.   DOI
41 Christiansen, J. K., Nielsen, J. S., Ebersbach, T., Valentin-Hansen, P., Sogaard-Andersen, L. and Kallipolitis, B. H. 2006. Identification of small Hfq-binding RNAs in Listeria monocytogenes. RNA 12:1383-1396.   DOI
42 Goto, K. and Ohata, K. 1956. New bacterial diseases of rice (brown stripe and grain rot). Ann. Phytopathol. Soc. Jpn. 21:46-47.
43 De Fernandez, M. T. F., Eoyang, L. and August, J. T. 1968. Factor fraction required for the synthesis of bacteriophage $Q{\beta}$-RNA. Nature 219:588-590.   DOI
44 Ding, Y., Davis, B. M. Waldor, M. K. 2004. Hfq is essential for Vibrio cholerae virulence and downregulates sigma expression. Mol. Microbiol. 53:345-354.   DOI
45 Fantappie, L., Metruccio, M. M., Seib, K. L., Oriente, F., Cartocci, E., Ferlicca, F., Giuliani, M. M., Scarlato, V. and Delany, I. 2009. The RNA chaperone Hfq is involved in stress response and virulence in Neisseria meningitidis and is a pleiotropic regulator of protein expression. Infect. Immun. 77:1842-1853.   DOI
46 Frohlich, K. S. and Vogel, J. 2009. Activation of gene expression by small RNA. Curr. Opin. Microbiol. 12:674-682.   DOI
47 Geng, J., Song, Y., Yang, L., Feng, Y., Qiu, Y., Li, G., Guo, J., Bi, Y., Qu, Y., Wang, W., Wang, X., Guo, Z., Yang, R. and Han, Y. 2009. Involvement of the post-transcriptional regulator Hfq in Yersinia pestis virulence. PLoS One 4:e6213.   DOI
48 Wilms, I., Moller, P., Stock, A. M., Gurski, R., Lai, E. M. and Narberhaus, F. 2012. Hfq influences multiple transport systems and virulence in the plant pathogen Agrobacterium tumefaciens. J. Bacteriol. 194:5209-5217.   DOI
49 Wroblewska, Z. and Olejniczak, M. 2016. Hfq assists small RNAs in binding to the coding sequence of ompD mRNA and in rearranging its structure. RNA 22:979-994.   DOI
50 Zeng, Q., McNally, R. R. and Sundin, G. W. 2013. Global small RNA chaperone Hfq and regulatory small RNAs are important virulence regulators in Erwinia amylovora. J. Bacteriol. 195:1706-1717.   DOI
51 Sun, X., Zhulin, I. and Wartell, R. M. 2002. Predicted structure and phyletic distribution of the RNA-binding protein Hfq. Nucleic Acids Res. 30:3662-3671.   DOI