DOI QR코드

DOI QR Code

The Roles of Two hfq Genes in the Virulence and Stress Resistance of Burkholderia glumae

  • Kim, Jieun (Department of Microbiology, Pusan National University) ;
  • Mannaa, Mohamed (Department of Microbiology, Pusan National University) ;
  • Kim, Namgyu (Department of Microbiology, Pusan National University) ;
  • Lee, Chaeyeong (Department of Microbiology, Pusan National University) ;
  • Kim, Juyun (Department of Microbiology, Pusan National University) ;
  • Park, Jungwook (Department of Microbiology, Pusan National University) ;
  • Lee, Hyun-Hee (Department of Microbiology, Pusan National University) ;
  • Seo, Young-Su (Department of Microbiology, Pusan National University)
  • Received : 2018.06.05
  • Accepted : 2018.07.22
  • Published : 2018.10.01

Abstract

The Hfq protein is a global small RNA chaperone that interacts with regulatory bacterial small RNAs (sRNA) and plays a role in the post-transcriptional regulation of gene expression. The roles of Hfq in the virulence and pathogenicity of several infectious bacteria have been reported. This study was conducted to elucidate the functions of two hfq genes in Burkholderia glumae, a causal agent of rice grain rot. Therefore, mutant strains of the rice-pathogenic B. glumae BGR1, targeting each of the two hfq genes, as well as the double defective mutant were constructed and tested for several phenotypic characteristics. Bacterial swarming motility, toxoflavin production, virulence in rice, siderophore production, sensitivity to $H_2O_2$, and lipase production assays were conducted to compare the mutant strains with the wild-type B. glumae BGR1 and complementation strains. The hfq1 gene showed more influence on bacterial motility and toxoflavin production than the hfq2 gene. Both genes were involved in the full virulence of B. glumae in rice plants. Other biochemical characteristics such as siderophore production and sensitivity to $H_2O_2$ induced oxidative stress were also found to be regulated by the hfq1 gene. However, lipase activity was shown to be unassociated with both tested genes. To the best of our knowledge, this is the first study to elucidate the functions of two hfq genes in B. glumae. Identification of virulence-related factors in B. glumae will facilitate the development of efficient control measures.

Keywords

References

  1. Ames-Gottfred, N. P., Christie, B. R. and Jordan, D. C. 1989. Use of the Chrome Azurol-S Agar Plate Technique to Differentiate Strains and Field Isolates of Rhizobium-Leguminosarum Biovar Trifolii. Appl. Environ. Microbiol. 55:707-710.
  2. Bibova, I., Skopova, K., Masin, J., Cerny, O., Hot, D., Sebo, P. and Vecerek, B. 2013. The RNA Chaperone Hfq Is Required for Virulence of Bordetella pertussis. Infect. Immun. 81:4081-4090. https://doi.org/10.1128/IAI.00345-13
  3. Bohn, C., Rigoulay, C. and Bouloc, P. 2007. No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol. 7:10. https://doi.org/10.1186/1471-2180-7-10
  4. Chao, Y. and Vogel, J. 2010. The role of Hfq in bacterial pathogens. Curr. Opin. Microbiol. 13:24-33. https://doi.org/10.1016/j.mib.2010.01.001
  5. Christiansen, J. K., Nielsen, J. S., Ebersbach, T., Valentin-Hansen, P., Sogaard-Andersen, L. and Kallipolitis, B. H. 2006. Identification of small Hfq-binding RNAs in Listeria monocytogenes. RNA 12:1383-1396. https://doi.org/10.1261/rna.49706
  6. De Fernandez, M. T. F., Eoyang, L. and August, J. T. 1968. Factor fraction required for the synthesis of bacteriophage $Q{\beta}$-RNA. Nature 219:588-590. https://doi.org/10.1038/219588a0
  7. Ding, Y., Davis, B. M. Waldor, M. K. 2004. Hfq is essential for Vibrio cholerae virulence and downregulates sigma expression. Mol. Microbiol. 53:345-354. https://doi.org/10.1111/j.1365-2958.2004.04142.x
  8. Fantappie, L., Metruccio, M. M., Seib, K. L., Oriente, F., Cartocci, E., Ferlicca, F., Giuliani, M. M., Scarlato, V. and Delany, I. 2009. The RNA chaperone Hfq is involved in stress response and virulence in Neisseria meningitidis and is a pleiotropic regulator of protein expression. Infect. Immun. 77:1842-1853. https://doi.org/10.1128/IAI.01216-08
  9. Frohlich, K. S. and Vogel, J. 2009. Activation of gene expression by small RNA. Curr. Opin. Microbiol. 12:674-682. https://doi.org/10.1016/j.mib.2009.09.009
  10. Geng, J., Song, Y., Yang, L., Feng, Y., Qiu, Y., Li, G., Guo, J., Bi, Y., Qu, Y., Wang, W., Wang, X., Guo, Z., Yang, R. and Han, Y. 2009. Involvement of the post-transcriptional regulator Hfq in Yersinia pestis virulence. PLoS One 4:e6213. https://doi.org/10.1371/journal.pone.0006213
  11. Goto, K. and Ohata, K. 1956. New bacterial diseases of rice (brown stripe and grain rot). Ann. Phytopathol. Soc. Jpn. 21:46-47.
  12. Goto, T., Nishiyama, K. and Ohata, K. 1987. Bacteria causing grain rot of rice. Japanese J. Phytopathol. 53:141-149. https://doi.org/10.3186/jjphytopath.53.141
  13. Hajnsdorf, E. and Regnier, P. 2000. Host factor Hfq of Escherichia coli stimulates elongation of poly(a) tails by poly(a) polymerase I. Proc. Natl. Acad. Sci. U. S. A. 97:1501-1505. https://doi.org/10.1073/pnas.040549897
  14. Ham, J. H., Melanson, R. A. and Rush, M. C. 2011. Burkholderia glumae: next major pathogen of rice?. Mol. Plant Pathol. 12:329-339. https://doi.org/10.1111/j.1364-3703.2010.00676.x
  15. Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T. and Hwang, I. 2003. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 87:890-895. https://doi.org/10.1094/PDIS.2003.87.8.890
  16. Kalogeraki, V. S. and Winans, S. C. 1997. Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188:69-75. https://doi.org/10.1016/S0378-1119(96)00778-0
  17. Kim, J., Kim, J. G., Kang, Y., Jang, J. Y., Jog, G. J., Lim, J. Y., Kim, S., Suga, H., Nagamatsu, T. and Hwang, I. 2004. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol. Microbiol. 54:921-934. https://doi.org/10.1111/j.1365-2958.2004.04338.x
  18. Kim, J., Kang, Y., Choi, O., Jeong, Y., Jeong, J. E., Lim, J. Y., Kim, M., Moon, J. S., Suga, H. and Hwang, I. 2007. Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae. Mol. Microbiol. 64:165-179. https://doi.org/10.1111/j.1365-2958.2007.05646.x
  19. King, K. Y., Horenstein, J. A. and Caparon, M. G. 2000. Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J. Bacteriol. 182:5290-5299. https://doi.org/10.1128/JB.182.19.5290-5299.2000
  20. Lee, J., Park, J., Kim, S., Park, I. and Seo, Y. S. 2016. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. Mol. Plant Pathol. 17:65-76. https://doi.org/10.1111/mpp.12262
  21. Link, T. M., Valentin-Hansen, P. and Brennan, R. G. 2009. Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc. Natl. Acad. Sci. U. S. A. 106:19292-19297. https://doi.org/10.1073/pnas.0908744106
  22. Mohanty, B. K., Maples, V. F. and Kushner, S. R. 2004. The Smlike protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol. Microbiol. 54:905-920. https://doi.org/10.1111/j.1365-2958.2004.04337.x
  23. Monteiro, C., Papenfort, K., Hentrich, K., Ahmad, I., Le Guyon, S., Reimann, R., Grantcharova, N. and Romling, U. 2012. Hfq and Hfq-dependent small RNAs are major contributors to multicellular development in Salmonella enterica serovar Typhimurium. RNA Biol. 9:489-502. https://doi.org/10.4161/rna.19682
  24. Morita, T., Maki, K. and Aiba, H. 2005. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev. 19:2176-2186. https://doi.org/10.1101/gad.1330405
  25. Muffler, A., Traulsen, D. D., Fischer, D., Lange, R. and Hengge-Aronis, R. 1997. The RNA-binding protein HF-I plays a global regulatory role which is largely, but not exclusively, due to its role in expression of the sigmaS subunit of RNA polymerase in Escherichia coli. J. Bacteriol. 179:297-300. https://doi.org/10.1128/jb.179.1.297-300.1997
  26. Nandakumar, R., Rush, M. C. and Correa, F. 2007. Association of Burkholderia glumae and B. gladioli with panicle blight symptoms on rice in Panama. Plant Dis. 91:767.
  27. Nandakumar, R., Shahjahan, A. K. M., Yuan, X. L., Dickstein, E. R., Groth, D. E., Clark, C. A., Cartwright, R. D. and Rush, M. C. 2009. Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Dis. 93:896-905. https://doi.org/10.1094/PDIS-93-9-0896
  28. Panda, G., Tanwer, P., Ansari, S., Khare, D. and Bhatnagar, R. 2015. Regulation and RNA-binding properties of Hfq RNA chaperones in Bacillus anthracis. Biochim. Biophys. Acta. 1850:1661-1668. https://doi.org/10.1016/j.bbagen.2015.03.016
  29. Rai, B., Shrestha, A., Sharma, S. and Joshi, J. 2014. Screening, optimization and process scale up for pilot scale production of lipase by Aspergillus niger. Biomed. Biotechnol. 2:54-59.
  30. Ramos, C. G., Sousa, S. A., Grilo, A. M., Feliciano, J. R. and Leitao, J. H. 2011. The second RNA chaperone, Hfq2, is also required for survival under stress and full virulence of Burkholderia cenocepacia J2315. J. Bacteriol. 193:1515-1526. https://doi.org/10.1128/JB.01375-10
  31. Ramos, C. G., da Costa, P. J. P., Doring, G. and Leitao, J. H. 2012. The novel cis-encoded small RNA h2cR is a negative regulator of hfq2 in Burkholderia cenocepacia. PloS one 7:e47896. https://doi.org/10.1371/journal.pone.0047896
  32. Salgado-Garrido, J., Bragado-Nilsson, E., Kandels-Lewis, S. and Seraphin, B. 1999. Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin. EMBO J. 18:3451-3462. https://doi.org/10.1093/emboj/18.12.3451
  33. Salim, N. N. and Feig, A. L. 2010. An upstream Hfq binding site in the fhlA mRNA leader region facilitates the OxyS-fhlA interaction. PloS one 5:e13028. https://doi.org/10.1371/journal.pone.0013028
  34. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, NY, USA. 1546 pp.
  35. Sato, Z., Koiso, Y., Iwasaki, S., Matsuda, I. and Shirata, A. 1989. Toxins produced by Pseudomonas glumae. Japanese J. Phytopathol. 55:353-356. https://doi.org/10.3186/jjphytopath.55.353
  36. Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  37. Sittka, A., Pfeiffer, V., Tedin, K. and Vogel, J. 2007. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol. Microbiol. 63:193-217. https://doi.org/10.1111/j.1365-2958.2006.05489.x
  38. Sobrero, P. and Valverde, C. 2012. The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit. Rev. Microbiol. 38:276-299. https://doi.org/10.3109/1040841X.2012.664540
  39. Sobrero, P., Schluter, J. P., Lanner, U., Schlosser, A., Becker, A. and Valverde, C. 2012. Quantitative proteomic analysis of the Hfq-regulon in Sinorhizobium meliloti 2011. PLoS One 7:e48494. https://doi.org/10.1371/journal.pone.0048494
  40. Sonnleitner, E., Moll, I. and Blasi, U. 2002. Functional replacement of the Escherichia coli hfq gene by the homologue of Pseudomonas aeruginosa. Microbiology 148:883-891. https://doi.org/10.1099/00221287-148-3-883
  41. Sonnleitner, E., Hagens, S., Rosenau, F., Wilhelm, S., Habel, A., Jager, K. E. and Blasi, U. 2003. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb. Pathog. 35:217-228. https://doi.org/10.1016/S0882-4010(03)00149-9
  42. Sonnleitner, E. and Blasi, U. 2014. Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa Carbon Catabolite Repression. PLoS Genet. 10:e1004440. https://doi.org/10.1371/journal.pgen.1004440
  43. Soper, T. J. and Woodson, S. A. 2008. The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA 14:1907-1917. https://doi.org/10.1261/rna.1110608
  44. Sousa, S. A., Ramos, C. G., Moreira, L. M. and Leitao, J. H. 2010. The hfq gene is required for stress resistance and full virulence of Burkholderia cepacia to the nematode Caenorhabditis elegans. Microbiology 156:896-908. https://doi.org/10.1099/mic.0.035139-0
  45. Sun, X., Zhulin, I. and Wartell, R. M. 2002. Predicted structure and phyletic distribution of the RNA-binding protein Hfq. Nucleic Acids Res. 30:3662-3671. https://doi.org/10.1093/nar/gkf508
  46. Trung, H. M., Van, N. V., Vien, N. V., Lam, D. T. and Lien, M. 1993. Occurrence of rice grain rot disease in Vietnam. Int. Rice Res. Notes 18:30.
  47. Tsui, H. C., Leung, H. C. and Winkler, M. E. 1994. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol. Microbiol. 13:35-49. https://doi.org/10.1111/j.1365-2958.1994.tb00400.x
  48. Valentin-Hansen, P., Eriksen, M. and Udesen, C. 2004. The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol. Microbiol. 51:1525-1533. https://doi.org/10.1111/j.1365-2958.2003.03935.x
  49. Wilms, I., Moller, P., Stock, A. M., Gurski, R., Lai, E. M. and Narberhaus, F. 2012. Hfq influences multiple transport systems and virulence in the plant pathogen Agrobacterium tumefaciens. J. Bacteriol. 194:5209-5217. https://doi.org/10.1128/JB.00510-12
  50. Wroblewska, Z. and Olejniczak, M. 2016. Hfq assists small RNAs in binding to the coding sequence of ompD mRNA and in rearranging its structure. RNA 22:979-994. https://doi.org/10.1261/rna.055251.115
  51. Zeng, Q., McNally, R. R. and Sundin, G. W. 2013. Global small RNA chaperone Hfq and regulatory small RNAs are important virulence regulators in Erwinia amylovora. J. Bacteriol. 195:1706-1717. https://doi.org/10.1128/JB.02056-12