• Title/Summary/Keyword: whole number and fraction knowledge

Search Result 7, Processing Time 0.021 seconds

Preservice teachers' understanding of fraction multiplication through problem posing and solving in Korea and the United States (문제제기 및 해결을 통한 한국과 미국 예비교사의 분수 곱셈 이해 탐색)

  • Yeo, Sheunghyun;Lee, Jiyoung
    • The Mathematical Education
    • /
    • v.61 no.1
    • /
    • pp.157-178
    • /
    • 2022
  • Mathematics teachers' content knowledge is an important asset for effective teaching. To enhance this asset, teacher's knowledge is required to be diagnosed and developed. In this study, we employed problem-posing and problem-solving tasks to diagnose preservice teachers' understanding of fraction multiplication. We recruited 41 elementary preservice teachers who were taking elementary mathematics methods courses in Korea and the United States and gave the tasks in their final exam. The collected data was analyzed in terms of interpreting, understanding, model, and representing of fraction multiplication. The results of the study show that preservice teachers tended to interpret (fraction)×(fraction) more correctly than (whole number)×(fraction). Especially, all US preservice teachers reversed the meanings of the fraction multiplier as well as the whole number multiplicand. In addition, preservice teachers frequently used 'part of part' for posing problems and solving posed problems for (fraction)×(fraction) problems. While preservice teachers preferred to a area model to solve (fraction)×(fraction) problems, many Korean preservice teachers selected a length model for (whole number)×(fraction). Lastly, preservice teachers showed their ability to make a conceptual connection between their models and the process of fraction multiplication. This study provided specific implications for preservice teacher education in relation to the meaning of fraction multiplication, visual representations, and the purposes of using representations.

An Operational Analysis for Solving Linear Equation Problems (조작적 분석을 통한 일차방정식 해결 연구)

  • Shin, Jae-Hong;Lee, Joong-Kweon
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.3
    • /
    • pp.461-477
    • /
    • 2009
  • In this study, an operational analysis in the context of linear equations is presented. For the analysis, several second-order models concerning students' whole number knowledge and fraction knowledge based on teaching experiment methodology were employed, in addition to our first-order analysis. This ontogenetic analysis begins with students' Explicitly Nested number Sequence (ENS) and proceeds on through various forms of linear equations. This study shows that even in the same representational forms of linear equations, the mathematical knowledge necessary for solving those equations might be different based on the type of coefficients and constants the equation consists of. Therefore, the pedagogical implications are that teachers should be able to differentiate between different types of linear equation problems and propose them appropriately to students by matching the required mathematical knowledge to the students' potential constructs.

  • PDF

Modification of Unit-Segmenting Schemes for Division Problems Involving Fractional Quantities (단위분할 도식의 재구성을 통한 포함제 분수나눗셈 문제해결에 관한 연구)

  • Shin, Jae-Hong;Lee, Soo-Jin
    • School Mathematics
    • /
    • v.14 no.2
    • /
    • pp.191-212
    • /
    • 2012
  • In the field of arithmetic in mathematics education, there has been lack of fine-grained investigations addressing the relationship between students' construction of division knowledge with fractional quantities and their whole number division knowledge. This study, through the analysis of part of collected data from a year-long teaching experiment, presents a possible constructive itinerary as to how a student could modify her unit-segmenting scheme to deal with various fraction measurement division situations: 1) unit-segmenting scheme with a remainder, 2) fractional unit-segmenting scheme. Thus, this study provides a clue for curing a fragmentary approach to teaching whole number division and fraction division and preventing students' fragmentary understanding of the same arithmetical operation in different number systems.

  • PDF

An Analysis of Pre-service Teachers' Pedagogical Content Knowledge about Story Problem for Division of Fractions (분수 나눗셈 스토리 문제 만들기에 관한 예비교사 지식 조사 연구)

  • Noh, Jihwa;Ko, Ho Kyoung;Huh, Nan
    • Education of Primary School Mathematics
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2016
  • This study examined pre-service teachers' pedagogical content knowledge of fraction division in a context where they were asked to write a story problem for a symbolic expression illustrating a whole number divided by a proper fraction. Problem-posing is an important instructional strategy with the potential to create meaningful contexts for learning mathematical concepts, especially when real-world applications are intended. In this study, story problems written by 135 elementary pre-service teachers were analyzed with respect to mathematical correctness. error types, and division models. Patterns and tendencies in elementary pre-service teachers' knowledge of fraction division were identified. Implicaitons for teaching and teacher education are discussed.

Commutative Property of Multiplication as a priori Knowledge (선험적 지식으로서 곱셈의 교환법칙 교육의 문제)

  • Yim, Jaehoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • Instructions for the commutative property of multiplication at elementary schools tend to be based on checking the equality between the quantities of 'a times b 'and b' times a, ' for example, $3{\times}4=12$ and $4{\times}3=12$. This article critically examined the approaches to teach the commutative property of multiplication from Kant's perspective of mathematical knowledge. According to Kant, mathematical knowledge is a priori. Yet, the numeric exploration by checking the equality between the amounts of 'a groups of b' and 'b groups of a' does not reflect the nature of apriority of mathematical knowledge. I suggest we teach the commutative property of multiplication in a way that it helps reveal the operational schema that is necessarily and generally involved in the transformation from the structure of 'a times b' to the structure of 'b times a.' Distributive reasoning is the mental operation that enables children to perform the structural transformation for the commutative property of multiplication by distributing a unit of one quantity across the other quantity. For example, 3 times 4 is transformed into 4 times 3 by distributing each unit of the quantity 3, which results in $3{\times}4=(1+1+1){\times}4=(1{\times}4)+(1{\times}4)+(1{\times}4)+(1{\times}4)=4+4+4=4{\times}3$. It is argued that the distributive reasoning is also critical in learning the subsequent mathematics concepts, such as (a whole number)${\times}10$ or 100 and fraction concept and fraction multiplication.

  • PDF

Exploring fraction knowledge of the stage 3 students in proportion problem solving (단위 조정 3단계 학생의 비례 문제 해결에서 나타나는 분수 지식)

  • Lee, Jin Ah;Lee, Soo Jin
    • The Mathematical Education
    • /
    • v.61 no.1
    • /
    • pp.1-28
    • /
    • 2022
  • The purpose of this study is to explore how students' fractional knowledge is related to their solving of proportion problems. To this end, 28 clinical interviews with four middle-grade students, each lasting about 30~50 minutes, were carried out from May 2021 to August 2021. The present study focuses on two 7th grade students who exhibited their ability to coordinate three levels of units prior to solving whole number problems. Although the students showed interiorization of three levels of units in solving whole number problems, how they coordinated three levels of units were different in solving proportion problems depending on whether the problems required reasoning with whole numbers or fractions. The students could coordinate three levels of units prior to solving the problems involving whole numbers, they coordinated three levels of units in activity for the problems involving fractions. In particular, the ways the two students employed partitioning operations and how they coordinated quantitative unit structures were different in solving proportion problems involving improper fractions. The study contributes to the field by adding empirical data corroborating the hypotheses that students' ability to transform one three levels of units structure into another one may not only be related to their interiorization of recursive partitioning operations, but it is an important foundation for their construction of splitting operations for composite units.

A case study on the quadratic function problem solving process of middle school students with different unit coordination stages (단위 조정 단계가 다른 중학생의 이차함수 문제 해결 과정에서 나타나는 특징)

  • Lee, Jin Ah;Lee, Soo Jin
    • The Mathematical Education
    • /
    • v.61 no.3
    • /
    • pp.441-456
    • /
    • 2022
  • The purpose of the current study is to report a part of our larger project whose focus is to understand a relationship between students' units coordination and K-12 school mathematics. In particular, in this paper we report how students who exhibit distinct levels of units coordinations used their knowledge of proportion to solve quadratic function problems of the form y = ax2. To this end, three 7th grade students all of whom assimiliated whole number problem situations with three levels of units but showed different levels for fraction problems were chosen. We carried out clinical interviews not only to understand their ability to coordinate units but to understand their problem solving process of proportion and the quadratic function problems. The analysis suggest that their abilities to coordinate units influenced their ways to solving proportion problems, and in turn influenced their ways to solve the specific form of quadratic functions. We have finalized our study by discussing how students' ability to construct and coordinate units, their proportion knowledge, and their knowledge associated with expressing the specific type of quadractic functions could be related.