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An Operational Analysis
for Solving Linear Equation Problems

Shin, Jae Hong” - Lee, Joong Kweon™

In this study, an operational analysis in the context of linear equations is presented.

For the analysis, several whole number
knowledge and fraction knowledge based on teaching experiment methodology were
employed, in addition to our first-order analysis. This ontogenetic analysis begins with
students’ Explicitly Nested number Sequence (ENS) and proceeds on through various
forms of linear equations. This study shows that even in the same representational forms
of linear equations, the mathematical knowledge necessary for solving those equations
might be different based on the type of coefficients and constants the equation consists
of. Therefore, the pedagogical implications are that teachers should be able to
differentiate between different types of linear equation problems and propose them

appropriately to students by matching the required mathematical knowledge to the

second-order models concerning students’

students’ potential constructs.

| . Introduction

There

have been tremendous efforts in

mathematics education rtesearch for investigating

the process of solving linear equations and

students’ corresponding mathematical knowledge
1996; Usiskin,
1988; Van Amerom, 2003; Wagner & Parker,

1993). Most

(cf. Linchevski & Herscovics,

research has been focused on

students’  manipulating  literal symbols and

understanding the concept of a variable along
with their operations on those symbols. However,
although

understanding  literal

symbols as a

variable plays a critical role in students’ solving
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linear equation problems, Wagner and Parker
(1993) reported that rash introduction of literal
symbols in the context of linear equations forced
students to suffer unexpected difficulties (e.g.
assuming  letters as  abbreviations or as
representing a specific value). Recently, several
studies have attempted to explore how students
learn to operate explicitly on unknown quantities
based in scheme theoretic approaches. Hackenberg
(2005) investigated how students reverse their

quantitative reasoning with fractions, aim of
which was to understand how students construct
schemes and operations that underlie the
construction and solution of basic linear equations

of the form ax=b. The key finding of her study
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was that the interiorization of three levels of
units was critical for the construction of schemes
to solve a linear equation problem like 3/5x=7.
Tung-Pekkan  (2008)

conducted a teaching

experiment specifically to investigate students’
construction of reciprocal reasoning in stating and
solving equations of the form ax=b where a and
b are both fractional numbers. The findings of
her study indicated that the construction of
measurement units were critical for producing and
operating with equivalency between both sides of
a linear equation problem and the construction of
measurement units involves the coordination of

sequences of different composite units. In
addition, Tung-Pekkan found that the students’
construction of a symbolic fraction multiplication
scheme was critical for students’ construction of
reciprocal reasoning. However, the research based
in scheme theoretic approaches is still in its early
stage and has yet to provide more comprehensive
explanations on how students solve various kinds
of linear equation problems.

The present

study was initiated by the

necessity of  suggesting an  encompassing,

theoretical basis fundamental to the scheme

theoretic approaches in solving linear equations.
We claim that operational analysis of linear
equations comes to be meaningful in instruction
when distinct types of linear equations are
identified in terms of the required mathematical
knowledge for each of the distinguished types of
problems. In other words, even in the same
representational forms of linear equations, say,
ax=b, the mathematical knowledge necessary for
solving those equations might be different based

on the type of coefficients and constants the

equation consists of. Thus, although all linear

equations can be constructed through
modifications of the two forms as x+a=b and
ax=b, our analysis of linear equations would be
elaborated under linear

seven categories of

equations, each of which seems to require
students to perform a distinct level of conceptual
operations. Also note that Hackenberg (2005) did
not identify solving a word problem involving a
linear equation structure like “Twenty inches
string is five times as long as yours. How long
is your string?” with solving it through explicit
manipulation of the symbolic expression, 5x=20
because the latter requires students to compress
their reasoning with quantities into a symbolic
way of operating where the goal is to determine
an unknown in a quantitative situation involving a
reversible relationship. That is to say, such
transition from the former to the latter likely
requires the interiorization of notation so that
algebraic symbols can be used in ways that are
independent of the sequence of operations used to
generate the symbols (Hackenberg, 2005). Thus,
as in Hackenberg’s study, the schemes and
operations that sustain writing and solving a
linear equation problem are the center of attention
in this study, rather than the students’ skill in

manipulating numeral and literal symbols.

Il. Theoretical Background
for Analysis

To fully appreciate the present study, there are
needs to understand some scholarly issues around

this operational  analysis. Thus, this section
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consists of three parts for the purpose. The first
first-order

knowledge/

part  addresses the notion of

knowledge/models and second-order
models which identify the nature of this study.
The second part whole

explicates  students’

number knowledge, which would be the
foundation of students’ fraction knowledge. Lastly,
the third part provides the

research results

concerning how students, especially with an
explicitly nested number sequence (ENS) or a
generalized number sequence (GNS), constructed
their fraction knowledge through modification of
their abstract whole number sequences.

First-order Models and Second-order Models

First-order ~mathematical knowledge is an
individual’'s own mathematical knowledge. That is,
an individual constructs his or her first-order
models to organize, comprehend, and control his
or her hand,

experience. On the other

second-order mathematical

knowledge are the
models which observers may construct of the
observed person’s knowledge in order to explain
their observation (Steffe, 2009e). Distinguishing
between first-order and second-order models is
crucial because we attribute mathematical realities
to students that are independent of our own
mathematical realities (Steffe & Thompson, 2000).
We, as researchers and teachers, have no way to
directly access students’ mathematical knowledge
and construct first-order models of students. What
we can best do is to build our scheme of the

students”  mathematical

knowledge, that s,
second-order models of students (Steffe, 2009¢).
Our hypothetical analysis can be regarded as a
combination of the first-order analysis based on
mathematical know-

the researchers’ individual

ledge and the second-order analysis based on the

models constructed for students’” mathematical
developments  through observation of  their
mathematical behavior. Through one year of

teaching experiment with a pair of seventh grade

students, it became clear to wus that it was

inappropriate to attribute our mathematical
concepts to students because it often conflated the
researchers’  and

students’ (Olive & Steffe, 2002). Olive and Steffe

mathematical  knowledge of
also argue that mathematics for students cannot
be specified a priori and must be experientially
abstracted from the observed modifications
students make in their schemes. Thus, it should
be acknowledged that our ontogenetic analysis
from particular researchers’ point of view without
considering social interactions with students would
be much exposed to the risk of such conflation.
However, we claim that such kind of theoretical
analysis will help, to a certain degree,
establishing a possible orienting point that we

want students to reach. Olive and Steffe (2002)

also assert that our first-order models of
mathematics do play fundamental roles in
formulating the second-order models, called

mathematics of students as well as in orienting
us as we formulate mathematics for students and
how to interact with them.

Students’ Whole Number Knowledge

Steffe, Cobb, and von Glasersfeld (1988)
conducted a teaching experiment with young
students for their development of whole number
knowledge. They identified three successive
number sequences from students’ construction of
mathematical schemes and operations: the initial

number sequence (INS), the tacitly nested number
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sequence (TNS), and the explicitly nested number
sequence. Each new number sequence is the
result of a reinteriorization of the previous
number sequence and generates more. abstract
units with which the student can operate (Olive,
1999). That is to say, a gradual decrease in
students’  dependence on  their  immediate
experimental world can characterize the learning
stages of number sequences and it is the
operations that students can perform using their
number sequences that distinguish among distinct
stages of the number sequences (Steffe, 2009c).
Later, the notion of the generalized number
sequence ensued while seeing how students who
had constructed the ENS might use that number
sequence to  construct schemes to  solve
multiplying and dividing situations (Steffe, 2009b).
For this paper, the explication of the ENS and
the GNS is the main focus because students are
expected to have constructed the ENS or the
GNS for solving the seven prototypes of linear
equations presented in this study.

A crucial step for the construction of an ENS
item

The

unit
1999).

is the establishment of an abstract

(Olive,

" "

one” as an iterable unit
iterable one can be produced through repeatedly
applying the “one more item” operation when
double counting. After the construction of an
iterable unit item, a student can engage in
part-whole reasoning. When the unit of one is
iterable, a number word refers to a composite
unit containing a unit which can be iterated the
number of times indicated by the number word.
This iterability of one “opens possibility for a
child to collapse a composite unit into a unit

structure containing a singleton unjt which can be

iterated so many times” (Steffe, 2009c, p. 24).
Such characteristic of the ENS enables students
to establish multiplicative schemes that involve
two levels of units. Further, they can generate a
numerical composite of composite unit items as a
result of those operations, but they have yet to
interiorize or symbolize them so that the
numerical composite of composite unit items can
be used as given input for further operations
(Olive, 1999).

The reinteriorization of the ENS results in
iterable composite units. When students have
constructed composite units as iterable, they can
be regarded as at least in the process of
reorganizing their ENS into the GNS (Steffe,
1992). In other words, the GNS is a
generalization of the operations on units of the
ENS to composite units. “Speaking metapho-
rically, children are in a ‘composite units’ world
rather than a ‘units of one’ world” (Steffe, 2009c,
p24). In a GNS, a composite unit is iterable,
that is, any composite unit can be taken as the
basic unit of the sequence. For a composite unit
to be judged as iterable, a student should be able
iterations of the

‘to represent and combine

composite unit prior to activity. Students’

interiorization process from their ENS to the
GNS arises when they operate with composite
units to solve complex multiplicative problems
that recursive their

Tequire applications  of

units-coordinating operations to the results of
those operations (Olive, 1999). Therefore, students
who have constructed a GNS can take units of
units of units rather than simply units of units as
given.

Construction of Diverse Fraction Schemes
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Although a partitioning operation, mentally
projecting a concept of a whole number into an
line

unmarked fundamental to

segment, s
students’ development of fraction knowledge, the
Fractions Project (Steffe & Olive, 1990) showed
there needs to be several distinctions among
students’  partitioning

operations for detailed

descriptions of their constructive itinerary of

fraction schemes.

First of all, a student’s
fragmenting of a continuous unit can not be
judged as an equi-partitioning until “the operating
child intends to fragment the continuous unit into
equal sized parts and can use any one of these
equal sized parts in iteration to produce a
connected but segmented unit of the same size as
the original unit” (Steffe, 200%9a, p. 30). The

modification of the scheme

equi-partitioning
entails a partitive fractional scheme, which is
regarded as the first genuine fractional scheme.
With the partitive fractional scheme, a student
can disembed any subcollection of elements from
the original partitioned whole without destroying
it and constitute a composite unit in its own
right by uniting them together. This establishes
the classical numerical part-to-whole operation
that serves as a fundamental operation in the
construction of fractional schemes (Steffe, 2009a).
However, the limited understanding of fractions as
parts of a specific partitioned whole constrains
students’ construction of invariant, multiplicative
relation between the sizes of the unit fraction and
the referent whole. In other words, for the
construction of “thirteen-twelfths” as a fractional
quantity students should transcend the part-whole
meaning  of which

fractions, requires  the

construction of splitting operation. The splitting

operation is qualitatively different than the

operations carried on in the equi-partitioning
scheme. The splitting operation is a simultaneous
composition of partitioning and iterating whereas
in the equi-partitioning scheme the two operations
are performed sequentially. With the splitting

operation, a unit fraction, say, one-twelfth

becomes a fractional number freed from its
containing whole and available for use in the
construction of thirteen-twelfths, The partitive

fraction scheme, the emergence of the

upon
splitting operation, is considered as an iterative
fraction scheme that can be used to produce
improper fractions (Steffe, 2009d).

A unit fraction composition scheme emerges
when recursive partitioning is embedded in a
reversible  part-whole  fraction scheme. The
emergence of the scheme is on the basis of a
student’s construction of a unit of unit of unit as
an assimilating structure whose units can be used
as material in further operation. That is to say,
attributing to a student a unit fraction
composition scheme is to see whether partitioning,
say, one-fourth of a stick into three equal parts
one of the

symbolizes each

four-fourths into three parts (Steffe, 2009f). The

partitioning

construction of a unit commensurate fraction
scheme can be confirmed if a student could make
unit fractional parts of a composite unit in the
form of a connected number and transform these
unit fractional parts into commensurate fractions
(Olive & Steffe, 2009). Olive and Steffe argue
that taking three levels of units as given is
necessary for the construction of commensurate
fractions. For instance, establishing four as an
of the connected

iterable unit in the context
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number, say, twenty-four makes possible for a
student to be aware that a 4/12-stick can be
iterated three times to make a 12/12-stick before
repeating it. Then the student can transform the
fraction, four-twelfths into one-third and set the
commensurate relation between the two fractions,
which undergirds the students’ construction of

Jraction adding scheme.

Ill. Teaching Experiment
Methodology

All excerpted data in this paper, including our
data, were grounded in a teaching experiment
methodology (Steffe & Thompson, 2000), most of
which were collected through interactions with
one or two students ranging from third to seventh
grade in a computer microworld, JavaBars (Olive,
2007). Therefore, brief descriptions of a teaching
experiment methodology and of the program,
JavaBars clarify our The

analysis. teaching

experiment is a methodology for conducting
scientific research on mathematics learning whose
primary purpose is for researchers to experience
students’ mathematical learning and reasoning. In
other words, we assume that there would be no
basis for understanding the mathematical concepts
without the

(Steffe &

and operations students construct

experiences afforded by teaching
Thompson, 2000). Researchers who do not engage
in the teaching of students run the risk that their
models will be distorted to reflect their own
mathematical knowledge (Cobb & Steffe, 1983).
The teaching experiment methodology is deeply

rooted in radical constructivism in the sense that

researchers  conducting  teaching  experiments
attribute mathematical realities to students that are
independent of their own mathematical realities
and, therefore, a primary goal of the teacher in a
teaching experiment is to establish living models
of students’mathematics. Steffe and Thompson
(2000) argue that the goal of establishing living
models is sensible only when the idea of
teaching is predicated on an understanding of
human beings as self-organizing and
self-regulating. That is, mathematics should be
regarded as a product of the function of human
intelligence (Piaget, 1980, as cited in Steffe and
Thompson, 2000) rather than as a product of
impersonal, universal, and ahistorical reason.

The JavaBars was specially designed for
teaching experiments. Most of whole number and
fraction problems in the cited teaching
experiments were posed on JavaBars screen and
thus most of research findings were the results of
retrospective analysis in students’ mathematical

activities conducted on JavaBars. JavaBars
provides students with possibilities for enacting
their mathematical operations with whole numbers
and fractions, It also provides the
teacher/researcher with opportunities to provoke
perturbations in students’ mathematical schemes
and observe students’ mathematical thinking in
action (Olive & Lobato, 2008). The software
consists of  on-screen  manipulatives  like
rectangular regions on which students can perform
engaging in the fundamental operations in the
development of the previously outlined fraction
schemes. For example, using JavaBars, a student
can make a bar and partition the bar into 4

equal parts, disembed one of the parts by pulling
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it out of the bar, and then use the REPEAT
action to iterate this one part to make a bar that

is 5/4 of the original whole bar (cf. Figure 1).

Figure 1. A computer microworld, JavaBars

V. Operational Analysis for
Linear Equations

The Form of x+a=b

In the case that a and b are whole numbers,
an ENS student is expected to be able to solve
this sort of linear equation problem. Numerical
part-to-whole  reasoning is  the  identifying
characteristic of the ENS (Steffe, 1992, p. 290).
Steffe (1992) showed, in his teaching experiment
with an ENS student, Johanna, that she was able
to solve this type of problems. When Steffe
asked her to take twelve blocks, told her that
together they had nineteen, and asked her how
many he had, Johanna said “seven” after sitting
silently for about 20 seconds. Her explanation
indicated that she first decomposed nineteen into
two parts, ten and nine. She then transformed the
parts inio twelve and seven by adding two to ten

and compensated by subtracting two from nine.

Steffe argued that this example indicated that

Johanna could disembed numerical parts from a
numerical whole, use these parts as material for
further operating, and reconstitute that result as
the original numerical whole because of her ENS.
Also, in order to construct a reversible adding
scheme, that is, to realize the subtraction b-a as
a necessary operations for specifying the
unknown, the ENS should be assumed. That is,
such reversibility in solving linear equations of
the form of x+a=b requires more than the TNS
because Steffe (1992) asserts that “constructing
the tacitly nested number sequence is not
sufficient for establishing addition as the inversion
of subtraction. A third level of interiorization of
the number sequence, which yields the ENS, is
necessary to establish this inversion” (p. 305).
However, if a or b is a fractional quantity or
number, that is, in the case of the solution being
fractional, an ENS is not sufficient. Students must
construct schemes that enable them to add and
subtract  fractional quantities. Throughout the
following analysis for linear equation prototypes 1
and 2, which both involve at least one fractional
quantity, mathematical constructs necessary for
dealing with fractional quantities beyond the ENS
are indicated.

Prototype 1: There is a cup containing 7/5

ounces of juice. If 1 poured my juice into the

cup, the sum of juice in the cup and my juice

would equal to 3 ounces. How much juice did

I pour into the cup?

Once the student constructs a goal to find the
unknown quantity in the problem situation, she is
expected to transform the situation into the
subtraction problem of 7/5 ounces from 3 ounces

for getting the unknown amount of juice. Then,
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for the subtraction, the student must have

constructed a commensurate fractional scheme in
order to transform 3 into 15/5. The commensurate
fractional scheme seems to call for students’
construction of a

which

three-levels-of-units  structure,
is the characteristic of a GNS. Steffe
(2003) claimed that, in his teaching experiments
with a fifth-grade student, Jason, recursive
partitioning was the basic operation underpinning
the act of creating a new partition that could be
used to make a fraction commensurate with one
third and recursive partitioning is the inverse
operation of first producing a composite unit,
making multiple copies of this composite unit,
and then uniting the copies into a unit of units
of units. Thus, producing a recursive partitioning
implies that a student can engage in the
operations that produce a unit of units of units,
but in the reverse direction (Steffe, 2003).
Nevertheless, the fact that a student constructed
commensurate fractional scheme might not be
enough to explain her transforming of 3 into
15/5. In addition to the scheme, the student
should have a sense of logical necessity to trigger
her constructed commensurate fractional scheme
when assimilating this problem situation. That is,
to choose a specific commensurate fraction to 3,
‘15/5° in this case, should be performed on her
sense of logical necessity under the goal of
making possible to subtract 7/5 from 3.

Another

which

important
should be

feature of this problem,
taken into consideration all
through this paper, is when it requires for a
student to deal with a known or an unknown
improper fractional quantity. A student who does

not consider 9/7 as both a mixed number and as

a number in its own right has not constructed
improper fractions (Hackenberg, 2007b). Improper
fractions make little sense to students who have
only constructed a partitive fractional scheme.
Being able to generate any fraction by a whole
number iteration of a part of it (e.g. to make 7/3
inches from 1/3 inch iterated seven times), and
still maintain its relationship to the whole are
necessary for the meaning of improper fractions
(Hackenberg, 2005). Steffe (2002) emphasize the
splitting  operation for the construction of
improper fractions and Olive and Steffe (2002)
view that coordinating three levels of units is
involved in the construction of improper fractions.
Therefore, it may well be argued that reasoning
with a three-levels-of-units structure is essential
for students to solve whichever form of linear
equations involving improper fractions.

Prototype 2: If I joined my string to a 2/3

inch-long string, the total length would be 3/4

of an inch. How long is my original string?

It seems clear that a student who can solve
this problem must have constructed fraction
adding scheme. Even though this is a subtraction
problem of 2/3 from 3/4 where reversible
reasoning is required, from our point of view,
there would not be much difficulty in finding the
solution if a student has a fractional adding
scheme. However, students’ construction of a
fractional adding scheme is not a simple process
because bringing forth a fraction composition
scheme and a commensurate fraction scheme is

seemingly crucial in the construction of a fraction

adding scheme (Steffe, 2003). Fraction
composition scheme is the integration of an
iterative  fractional scheme  with  reversible

- 468 -



partitioning operations and distributive strategies

(Olive, 1999). Olive showed in his teaching
experiment that a GNS was necessary, and the
distributive strategies associated with a GNS and
the ability of students to reverse their partitioning
operations were key contributors to the students’
construction of the fractional composition scheme.
Another aspect to be noticed for the construction
of the fraction adding scheme is to bring forth
common partitioning operations, whose purpose is
to partition a bar only once so that both unit

fractions the bar. The

can be pulled from
common partitioning operations enable students to
transform the

produce a partition that would

fractions that are involved in a sum into
commensurate fractions that are multiples of the
same unit fraction (Steffe, 2003). Therefore, in
order to subtract 2/3 from 3/4, a student should
be able to divide a whole into twelve for finding
of a common measurement unit, 1/12 of 2/3 and
3/4. She might

utilize her number sequence

scheme of whole numbers to coordinate and
compare her number sequence for 3s and 4s until
common

partitioning  is After

transforming 3/4 into 9/12 and 2/3 into 812

accomplished.

through common partitioning operations, she will
finally get the solution 1/12 by subtracting 8/12
from 9/12.

The Form of ax=b

Hackenberg (2005) clarifies that the equation
ax=b is essentially a statement of division and
considering its construction and solution requires
understanding how a student produces division,
which  entails

understanding  the  student’s

multiplying scheme and multiplicative reasoning.

Further, she argues that any statement of division

inherently involves rteasoning with fractions
although fractions may appear implicitly or be
disguised. Therefore, both multiplicative and
fractional reasoning are foundational in studying
how students construct and solve linear equations
like ax=b.
Prototype 3: Twenty-eight liters of water s
four times as much as the amount that you
have in your bucket. How much do you have?
When a and b are whole numbers and the
whole number relationship with the unknown does
divide the known whole number quantity, ENS
students might have difficulty to solve it. To
solve this problem, a student’s concept of 28
should be able to symbolize the structure of
composite units. That is, 28 can be viewed as a
unit of four units of an unknown quantity. Steffe
(1992) claims that "using a unit to re-process the
elements of a unit of units of units is essential
in establishing the composite unit as being
iterable” -(p. 296). Therefore, we are suspicious
that a student

who is yet to construct a

three-levels-of-units  structure could solve this
problem. ENS students can solve a problem like
items four

sharing 28 among

people by
estimating an unknown quantity, where they try it
to see if it works, and so on until they find one
that does work. However, in order for an ENS
student to solve the above problem, she at least
needs to construct a composite units partitioning
which GNS  (Steffe,

1992). In other words, the student should go

scheme, characterizes a
through the process of establishing the operations
to feed the results to the situation of the scheme,

that is, the completeness of inversion between a
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unit-segmenting operation and a units-coordinating

operation. This is the precise process that
interiorizes the involved sequence of composite
units (Steffe, 1992). However, taking the results
of counting composite units as belonging to the
items that one intends to count is what an ENS
student has yet to construct.

Prototype 4: If one liter of juice is five times

as much as mine. How much liter of juice do

I have now?

This problem seems to necessitate for a student
to be able to bring forth the splitting operation.
Splitting operation is the composition of partition
and iterating (Steffe, 2002) and it would need to
happen simultaneously rather than sequentially.
This multiplicative reasoning with fractions, and
reversing that rteasoning are fundamental in
constructing schemes and operations that sustain
linear the ax=b

2005).

equations  of
Although a

solving basic
(Hackenberg, partitive
fractional scheme permits students to establish
meaning for unit fractional number words like
“one tenth” as one out of ten little pieces that
could be iterated ten times to produce a
partitioned segment of length equal to the original
(Steffe, 2003), the student who have constructed
the partitive fractional scheme is not expected to
flexibly deal with this problem situation. Rather,
a student should go further from the status and
construct an iterative fractional scheme upon the
emergence of the splitting operation. For example,
iterative  fractional

for students with schemes,

prior to activity, one-eighth implies a whole

consisting of one-cighth iterated eight times. In

contrast, even though students who have

constructed partitive fractional schemes can iterate

one-fifth three times to make three-fifths, one-fifth
is not yet an iterable unit for them because
one-fifth does not have this a priori multiplicative
relationship to the whole (Hackenberg, 2007b).
Therefore, for this problem, a student should be
aware that ‘my water” implies one-fifth of a
whole consisting of one-fifth iterated five times
prior to activity.

Prototype 5: If 1/3 meter of string is five

times as long as my string. How much string

do I have now?

This problem can be distinct from the

prototype 4 in that, a student must have

constructed a unit fractional composition scheme,

which is based on recursive partitioning.

The goal of fractional composition scheme is to
find how much a fraction is of a fractiopal
whole, and the situation is the result of taking a
fractional part out of a fractional part of the
whole, hence the name composition. The activity
of the scheme is the reverse of the operations
that produced the fraction of a fraction, with the
important addition of the subscheme, recursive
partitioning. The result of the scheme is the
fractional part of the whole constituted by the
fraction of a fraction (Steffe, 2004, p. 140).

fractional

Therefore, the unit composition

requires for a student to have constructed a
three-levels-of-units  structure  with  connected
numbers, "a mnumber sequence whose countable
items are the elements of a connected but
segmented continuous unit” (Steffe, 2009a, p. 12).
Prior to activity, a student should be able to
disembed 13 of a bar, if the activity is
conducted with JavaBars, from a hypothetical

whole bar and take into account the result of
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taking 1/5 of the disembedded 1/3 as 1/15 of a
hypothetical whole bar.
Prototype 6: Peppermint Stick Problem: A
7-inch peppermint stick is three times longer
than another stick. How long is the other
stick? (Hackenberg, 2003, p. 62)
Although the known fractional quantity and the

fractional the unknown are

relationship  with
whole numbers, being able to construct and use
fractional quantities and unit fractional relationship
is indispensable because the whole number
relationship with the unknown does not divide the
known whole number quantity. This problem can
be viewed as similar to the prototype 5 in that it
requires  students” reversible fractional scheme
based on a three-levels-of-units structure, but be
distinguished in that reasoning with distributive
with

activity explicitly emerges. If a student

distributive  reasoning forms a goal of a
distributive partitioning scheme, say, sharing four
identical candy bars equally among five people,
the student can partition each candy bar into five
parts, distribute one part from each of the four
candy bars to each of the five people with
understanding that the share of one person can be
replicated five times to produce the whole of the
four candy bars. The student also knows that 4/3
of one candy bar is identical to 1/5 of all of the
candy bars. Therefore, with the peppermint stick
problem, a studenmt with the distributive
partitioning scheme sets a goal to take 1/3 of the
7-inch peppermint stick. Then the student might
be able to partition each one-inch stick into three
parts, take one part from each of the seven
one-inch peppermint sticks, and unite them for

the amount of another stick. Further, the student

is explicitly aware that the result of his or her
activity amounts to 7/3 of an inch, which is the
answer of the problem.

Prototype 7: In the science class, two teams
The Lizards’ racecar travels

That’s 3/4 of how far the

made racecars.
23 of a meter.
Cobras’ car travels. Can you make the
distance the Cobras’ car traveled and tell how
Sar it went? (Hackenberg, 2007a, p. 15)
Hackenberg (2005) asserts that this type of
problems would be complex because they involve
a known fractional quantity and a fractional
relationship, where the numerator of the fractional
relationship does not divide the numerator of the
fractional quantity. When Hackenberg (2007a)
presented this problem to Deborah, a sixth grade
student in her teaching experiment, she solved it
by partitioning each of the 2/3 of a meter into
six equal parts, pulling out one of those small

parts, and making a 16-part bar (see Figure 2).

Figure 2. Deborah’s solution of the Race Car Problem
(from Hackenberg, 2007a)

Hackenberg claimed that for Deborah, 2/3 of a
meter from her hypothetical one meter was a unit

of two units each containing six units, and

simultaneously a unit of three units each

containing four units for finding 1/3 of 2/3 of a
with  Deborah

meter.  Another noticeable event
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was that she seemed 1o wuse reciprocal
relationships in her solutions of other similar
problems. Hackenberg explained that Deborah’s
use of reciprocal relationships might be attributed
to her abstraction of a fraction as a mathematical
concept, which is a program of operations
abstracted from the experience of using particular
schemes that includes an awareness of how the
schemes are composed and an ability to operate
with this awareness. She also claimed that the
central difference between two students, who
could reason with distribution and the other two
students, who could not, was whether they hold a
three-levels-of-units structure in mind and operate
further with it (Hackenberg, 2007a).

However, we are suspicious of Hackenberg’s
view that solving this type of problems stands in
for students’ complex construction, the rational
numbers of arithmetic (RNA) - being able to
relate any two fractions multiplicatively (Steffe,
2002). Olive (1999) claims that a fraction scheme
would need to include fractions as measurement
units to be regarded as a scheme for generating
the RNA. However, through the ontogenetic
analysis based on our first-order models and on
others’ work of students’ second-order models in
the context of linear equations of the form x+a=b
and ar=b, it is doubtful that fraction segmenting
operations mneed to be constructed for the
solutions. That is, in order for students to solve
the linear equations of the form ax=b, they are
likely to conduct, so called, partitive division
rather than quotitive division in mathematician’s
terms. Thus, it would be argued that the RNA be
enough for students” solving linear equations, but

not all schemes and operations of RNA might be

necessary for dealing with linear equations.

Problem situation of 2/3x=land 2/3x=y

There was an interesting sequence of events in
our teaching experiment with Damon, a seventh
grade student. Although he was regarded as a
three-levels-of-units  student at the beginning of
the semester, he could not solve a relatively
simple linear equation problem (You have your
bar, with JavaBars, on the screen. If 2/3 of my
bar is your bar, can you make my bar?) until the
end of the teaching experiment. He kept trying to
divide his bar into three rather two whenever the
teacher posed this question, whereas his partner,
three-levels-of-units

Carol, who also had a

structure, easily solved the problem. His

disconcertion was out of our expectation. On the
final day of the teaching experiment, when the
teacher posed the same question, he thought that
he was still asking a linear equation problem of
2/3x=1. However, Damon’s rtesponse in the last
episode revealed that he assimilated the problem

situation as 2/3x=y rather than 2/3x=1.

(‘T" stands for teacher and ‘D’ stands for

Damon.)

T: Make a bar. (Damon makes a square-shaped
bar on the screen.) That’s your bar. So 2/3 of
my bar is your bar, can you make my bar?

D: So'- (divides his bar into three pieces) This
is 2/3 of your bar-:-

T: Can you explain my question? This is---

D: That is basically--- My bar is 2/3 of yours.
So, I have to find out how much of your bar.

T: Right.

D: So--- (thirty seconds after) hold up. Mine is
2/3 of yours (clears all marks on his bar) but
how much is my bar? Is mine is like one?

T: How much is my bar?

<

How can 1 find yours when 1 don’t know
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what mine equals. So mine is just like equals
one bar?
T: Yes, yes, you can do.
D: Okay, that will be:--
divided by two, a half (divides his bar into

If 1 have one bar, then

two pieces and pulls out one out of two
pieces three times.) That’s your bar (pointing

out three pieces of one half bar).

Once he realized that he could identify his bar
as one, he easily constructed 3/2 of his bar by
dividing his bar into two pieces. Since there was
no more chance to investigate with Damon, it is
hard to conjecture what constraint did interfere
with his reversible reasoning. However, his
predisposition to numeric calculation in dealing
with his constructed mathematical situation shown
through all teaching episodes might prevent him
from constructing his algebraic reasoning based
on his quantitative reasoning. Another possible
explanation is that he constructed his problem
situation as involving two unknown quantities,
rather than one known quantity. In other words,
after Damon was allowed to consider his bar as
one (a known quantity), he immediately made the
other bar (an unknown bar) for his solution.
When his bar was unknown, that is, when he
was to operate on an unknown quantity for
constructing  another unknown quantity, he
appeared at a loss for a while. This interpretation
does make sense because the first step for all
linear equation problems presented was the
operation on or with an already known quantity.
Assimilating two unknowns in the problem
situation might prohibit Damon from assigning a
specific number to the outcome although the
relationship between two quantities was being

indicated. Therefore, Damon’s first construction of

the problem situation can be regarded as the
structure of 2/3x=y, not as that of 2/3x=1. The
situation of involving two unknowns seems to
require more advanced algebraic thinking in that
a particular number to operate on disappears and
the relationship between two unknowns remains

by itself.

V. Final Comments

By means of employing students’ whole
number and fraction schemes and operations, the
ontogenetic analysis for solving linear equations
of the form x+a=b and ax=b was offered. In
regard to the form of x+a=b, two prototypes
were presented both of which requires students to

have constructed a commensurate fraction scheme.

We also maintain that more  advanced
mathematical  knowledge, such as fraction
composition and fraction addition might be

necessary for students to solve the same form of
linear equations as fractional constants appear in
the problems. In case of linear equation problems
in the form of ax=b, five different prototypes
were suggested in order to distinguish required
students’ mathematical knowledge for each of the
indicates that a

problem The analysis

types.

distinct level of whole number and fraction

knowledge seems to be necessary at each five
different prototypes of problems depending on the
diverse relationship with unknown quantity and
the amount of known quantity. Especially, it
level  of

demonstrates  that  the  highest

mathematical knowledge might be demanded

when the problem involves a known fractional
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quantity and a fractional relationship, where the
numerator of the fractional relationship does not
divide the numerator of the fractional quantity.
Additionally, the last excerpt shows that students
can assimilate a linear equation problem as
involving two unknowns or as one unknown and
one known based on the way in which the
problem was posed irrespective of the teacher’s
intention. The proposed seven prototypes of linear
equation problems based on our theoretical
hypotheses will shed light on the research on
learning and teaching linear equations in school.
The proposed hypotheses, however,

should be)

are (and

subject to revisions until the

researchers’ model is not countermanded by

further  observations. It also should be
acknowledged that the range of our analysis is
restricted to the cases that unknown quantities in
linear equations are positive integers or positive
fractions. Dealing with other numbers such as
negative numbers and irrational numbers is
beyond the scope of this paper.

As an implication in mathematics instruction,
the results of this analysis call for teacher's
attentive awareness of students’ prior knowledge,
specifically related to whole numbers and
fractions, for teaching linear equations. That is,
teachers must choose appropriate linear equation
tasks that fit to their students’ present
mathematical ability even though the problems
seem to be identical in the representational forms.
Further, this study suggests that focusing on
manipulation of literal symbols to get the answer
of linear equations regardless of various types of
linear equations might impede their conceptual

understanding of variables as unknowns. Although

the attempt to express them in symbols is part of

building conceptual operations, symbolic

operations can become the focus of instruction

once students have developed coherent and stable

meaning that they may express symbolically
(Thompson & Saldanha, 2003).
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