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I. Background

Fractions have been considered to be the most

intricate numbers to deal with in arithmetic and there

have been tremendous efforts in mathematics education

research for investigating children’s learning of

fractions. For instance, Steffe and Olive (1990)

conducted The Fraction Project to investigate children’s

construction of operations that generate their fraction

schemes. The consecutive studies following The

Fraction Project by their colleagues as well as

Steffe’s & Olive’s study were based on the Reorganization

Hypothesis, the view that ‘children’s fraction schemes

are generated through modifications of their abstract

whole number sequences’ (Biddlecomb, 1994; Olive,

1999; Steffe, 2002; Steffe & Olive 2010; Steffe &

Tzur, 1994).

Children’s mature understanding of fractions

should be viewed as a synthesis of their understanding

of multiplication, division, and ratio via measurement

(Thompson & Saldanha, 2003). Mack (2000, 2001)

conducted a two-year study with children from fifth

to sixth grade the purpose of which was to examine

the long-term effect of learning with understanding

in multiplication of fractions. Especially, students’

ability to reconceptualize and partition different types

of units was the focus of the study because it was

believed to be essential for students to determine

the appropriate unit to be partitioned in a problem

situation as well as the unit upon which the results

of partitionings are based. The findings proposed

distinctive mental processes related to viewing the

unit to be partitioned and the results of their

partitionings as fractional amounts of a referent
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whole as well as related to different types of

problems involving multiplication of fractions. However,

her analysis was framed on the basis of different

types of problem situations that her students encountered

where the perceived relationship between the denominator

of the multiplier and the numerator of the

multiplicand is varied, rather than the suggested

levels of mental processes.

Lamon (1999) introduced two types of whole

number division: partitive division and quotitive

(measurement) division. The former involves partitioning

or determining equal parts or shares whereas in the

latter the question is how much of a quantity can

be measured out of the other quantity. The

difficulties that children might encounter in the

latter would be to identify the divisor as a new

unit of measure. Bulgar (2003) conducted a year-long

teaching experiment with fourth-grade students for

understanding children’s solving fraction division

problems prior to introduction of algorithmic instruction.

The task was to determine how many bows of

each size (mainly unit fractional quantities) could

be made from each (whole number) length of ribbon.

As a result, Bulgar reported that three distinct

solution methods emerged: (1) justification involving

natural number, (2) involving measurement, and (3)

involving fractions. She also documented that all

methods were related to children’s counting and

they had difficulty with division involving a non-unit

fraction divisor. As to partitive division, Empson,

Junk, Dominguez & Turner (2005) analyzed children’s

coordination of two quantities (number of people

sharing and number of things being shared) in their

solutions to equal sharing problems to see what

extent their coordination was multiplicative. They

gave an important implication for research in children’s

construction of fraction schemes by suggesting that

with various number combinations, children’s mathematical

activities in equal sharing problems involved whole

number knowledge constructs such as multiplicative

reasoning.

Nevertheless, fewer studies in research on division

have been attempted to address the relationship

between students’ construction of division knowledge

with fractional quantities and their whole number

division knowledge. Such lack of connections in

research might affect school mathematics curriculum

that division is merely treated as an operation one

performs on whole numbers, and fractions are

taught almost exclusively as part-whole concepts in

school mathematics (Toluk & Middleton, 2004).

II. Theoretical Constructs

The main concern of this study was to

investigate how the participating students modified

their whole number knowledge to solve measurement

division problems involving fractional quantities. In

this section, we explicate necessary theoretical constructs

on learning mathematics, which were employed to

interpret the students' actions and operations in their

problem solving processes.

1. Model of Learning: Scheme Theory

Piaget considered a scheme as a behavior structure

within the organism such that the organism can

transfer or generalize its action. Schemes that Piaget

referred to were more or less action schemes

based on repeatable actions patterns, and further

generalized through application to new objects
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(Steffe, Cobb, & Glasersfeld, 1988). According to

von Glasersfeld (1995), a scheme consists of three

parts: an 'experiential situation' which is activated

or recognized by the child, the specific 'activity'

associated with the conceived situation, and a

certain 'result' of the activity engendered by the

child’s prediction. The first part of a scheme

consists of a ‘recognition template’, which contains

records of operations used in past experience. Then

the activity of a cognitive scheme may consist of

an implementation of the assimilation operations, and

the result of the scheme may contain an

experienced situation (Olive & Steffe, 2002a). In

addition to the three components of a scheme, to

take into account the goal of an activity is inevitable

because, in constructivism, all cognitive activity takes

place within the experiential world of a goal directed

consciousness. The generated goal has to be

associated with the situation of the scheme, the

scheme’s activity is directed toward that goal, and

the results of the scheme are compared to the goal

(see Figure II-1). If the newly formed result

satisfies the goal, then the scheme is closed. It

should be noted that the double arrows linking the

three base components imply dynamic nature of a

scheme meaning that it is possible for any one of

them to be in some way compared or related to

either of the two others. Conclusively, the action of

a scheme is not sensory‐motor action, but interiorized

action by reflective abstraction with the most

minimal sensory‐motor indication (Olive & Steffe,

2002a).

<Figure II-1> A diagram for the structure of a

scheme (Steffe, 2010c, p. 23)

2. Schemes of Whole Number Knowledge

Steffe et al. (1988) conducted longitudinal teaching

experiments1) with young children for their

development of whole number knowledge and

identified five distinct types of counting schemes: two

pre-numerical counting schemes and three successive

number sequences - initial number sequence (INS),

tacitly nested number sequence (TNS), and explicitly

nested number sequence (ENS).2)

A 'number sequence' is the recognition template

of a numerical counting scheme, that is, its

assimilating structure. A number sequence is a

discrete numerical structure; it is a sequence of

arithmetical unit items that contain records of

counting acts (Steffe & Olive, 2010, p. 27).

Each new number sequence is the result of a

reinteriorization of the previous number sequence and

generates more abstract units with which the child

can operate (Olive, 1999). That is, a gradual decrease

in children’s dependence on their immediate experimental

world can characterize the learning stages of number

1) Teaching experiment is more than Piaget’s clinical interview in that clinical interview aims at establishing 'where

the child is' but the experiment aims at ways and means of getting children on (Glasersfeld, 1983: Steffe &

Thompson, 2000)

2) Detailed explanations for each type of counting scheme are beyond the range of this paper.
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sequences and it is the operations that children can

perform using their number sequences that distinguish

among distinct stages of the number sequences. Later,

the notion of the generalized number sequence

(GNS) ensued while seeing how children who had

constructed the ENS might use that number sequence

to construct schemes to solve situations that can be

regarded as multiplying and dividing situations

(Steffe & Olive, 2010).

A crucial step for the construction of an ENS

is the establishment of an abstract unit item 'one'

as an iterable unit (Olive, 1999). The iterable one

can be produced through repeatedly applying the

‘one more item' operation when double counting.

After the construction of an iterable unit item, a

child can engage in part‐whole reasoning. When

the unit of one is iterable, a number word refers

to a composite unit containing a unit, which can

be iterated the number of times indicated by the

number word. This iterability of one “opens the

possibility for a child to ‘collapse’ a composite

unit into a unit structure containing a singleton unit,

which can be iterated so many times.” (Steffe &

Olive, 2010, p. 42) This characteristic of the ENS

enables children to establish multiplicative schemes

that involve two levels of units. The ENS provides

children with the necessary operations to engage in

multiplicative reasoning. Further, they can generate

a numerical composite of composite unit items as

a result of those operations, but they have yet to

interiorize or symbolize them so that the numerical

composite of composite unit items can be used as

given input for further operations (Olive, 1999).

The reinteriorization of the ENS results in iterable

composite units. When children have constructed

composite units as iterable, they can be regarded

as at least in the process of reorganizing their

ENS into a GNS (Steffe, 1992). In other words,

the GNS is a generalization of the operations on

units of the ENS to composite units. “Speaking

metaphorically, children are in a ‘composite units’

world rather than a ‘units of one’ world.” (Steffe

& Olive, 2010, p. 43) In a GNS, a composite

unit is iterable, that is, any composite unit can be

taken as the basic unit of the sequence. For a

composite unit to be judged as iterable, a child

should be able to represent and combine iterations

of the composite unit prior to activity.

3. Connected Number Sequence & Fractional

Connected Number Sequence

When the situations of the counting scheme involves

a connected but segmented quantity through an

awareness of figurative length and figurative density,

a unification of discrete and continuous quantity

begins. Further, constructing connected numerical

composites opens the way for the construction of

a connected number sequence, which is “a number

sequence whose countable items are the elements

of a connected but segmented continuous unit”

(Steffe & Olive, 2010, p. 56). For the construction

of a connected number sequence (CNS), a child

should build awareness of indefinite length as well

as of indefinite numerosity as quantitative properties

of a connected number, which means the incorporation

of a notion of unit length into the abstract unit

items of their ENS (Olive & Steffe, 2002b). Thus,

children’s construction of a CNS plays a crucial

role in making sense of fractions. It enables children

to “use their discrete adding, subtracting, and

multiplying schemes to find unknown lengths using
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known lengths, and thus establish part whole relations

in the context of continuous quantities” (Olive &

Lobato, 2008, p. 9).

A fractional connected number sequence (FCNS)

is a connected number sequence, in which unit

fractions are the units of the connected numbers

(Steffe, 2002). The construction of such fractional

numbers is made possible when their fractional

meaning would no longer be directly dependent

on its relation to the whole of which it is part

(Steffe & Olive, 2010). Analogously, the iterability

of unit fractions with a FCNS is on a par with

that of a unit, one with an ENS. That is, children

can use, say, one eleventh as they use the unit of

one and it can be operated with in a way that is

analogous to how the child operates with the ENS

involving the unit of one (Steffe, 2002).

III. Method of Inquiry &

Research Question

A teaching experiment was conducted with a

pair of eighth-grade students at a rural middle

school in north Georgia. The teaching experiment

is a methodology for conducting scientific research

on mathematics learning. A primary purpose for

using a teaching experiment methodology is for

researchers to experience students’ mathematical

learning and reasoning. The teaching experiment

methodology is deeply rooted in radical constructivism

in the sense that researchers in teaching experiments

attribute mathematical realities to students that are

independent of their own mathematical realities and,

therefore, a primary goal of the teacher in a

teaching experiment is to establish living models

of students’ mathematics (Steffe & Thompson, 2000).

Learning involved in a teaching experiment is to

be regarded as accommodation in the context of

scheme theory. That is, what students learn is

defined in terms of the modifications of their

current schemes using available operations in a

new way rather than in terms of the mathematical

knowledge of the researchers. Therefore, the attention

would be focused on understanding the students’

assimilating schemes and how these schemes might

change as a result of their mathematical activity.

A teaching experiment consists of a sequence of

teaching episodes. A teaching episode includes a

teaching agent, one or more students, a witness of

the teaching episodes, and a method of recording

what happens during each episode (Steffe &

Thompson, 2000). The important duty of the

teacher-researcher in the teaching experiment is to

attempt to put aside his or her own concepts and

operations and not to insist that the students learn

what he or she knows. The research hypotheses

one formulates prior to a teaching experiment

usually guide the initial selection of the students

and the researchers’ overall general intentions, but

also new hypotheses are to be generated and

tested during the teaching episodes. Through generating

and testing hypotheses, boundaries of the students’

ways and means of operating can be formulated

(Steffe & Thompson, 2000).

The overarching goal of our teaching experiment

was to establish models for the participating students’

construction of Rational Numbers of Arithmetic

(RNA)3) because ‘RNA involves a multiplicative

3) RNA is a final form of construction of students’ fraction knowledge in The Fraction Project (Steffe & Olive,
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transformation4) between two fractional quantities,

which is expected to provide a constructive basis

for students’ construction of their proportional

reasoning5)’ (Shin & Lee, 2010). Two eighth-grade

participants for the present study were chosen based

on their ability to use composite units as iterable

units as an indication of the GNS. Carol joined

our teaching experiment from her seventh grade and

thus the teaching experiment with Rosa was the

second year of her experience with our research team.

During the first year we posed various problems in

several mathematical topics such as basic combinatorial

problems, calendar problems related to modular

arithmetic, and cooking recipe problems for proportional

reasoning.

During the teaching experiment, we met once or

twice a week in about 40-minute teaching episodes

in which the first author participated mostly as a

teacher-researcher. All teaching episodes were videotaped

with two cameras for on-going and retrospective

analysis. The ongoing analysis, the first type of

analysis, occurred by watching videos of the teaching

episodes and debating and planning future episodes.

For the most part, the resources from two cameras

were mixed for a single, digitalized video file on

the day of each teaching episode. In this way, we

created a restored view (Olive & Vomvoridi, 2006)

of our teaching experiment. Then a sequence of

summaries for the teaching episodes were created

in consecutive time, each of which provided not

only a written description of students’ mathematical

activities and interactions with the teacher, but also

emerging key points in students’ thinking and

learning that were taken into account for the next

teaching episode. The second type of analysis, which

has to be conducted later, is retrospective analysis.

The purpose of the retrospective analysis of the

sequence of teaching episodes is to make models

of students’ ways of operating mathematically through

conceptual analysis of students’ mathematical activities.

As a preliminary step of our teaching experiment,

we needed to investigate the current fraction

multiplication and division knowledge of our

participating students because it was closely related

to their construction of RNA. We expected that the

students were well-versed in fraction multiplication

and division because such topics were already

taught at their elementary schools and their academic

records were over an average level. However, when

the two students were asked division problems

generating fractional quantities, unexpected difficulties

(from the researchers’ point of view) were indicated

while their dealing with fractional quotients. Therefore,

the retrieved data analysis for this paper is derived

from our one-year teaching experiment with the

two 8th grade students, with which we intend to

explore the following question: How did the students

modify their whole number division knowledge

when solving division problems involving fractional

quantities?

1990). A student can be judged to have constructed the RNA when “the child is aware of the operations needed

not only to reconstruct the unit whole from any one of its parts but also to produce any fraction of the unit

whole from any other fraction” (Olive, 1999, p. 281).

4) A student can be attributed to the construction of a scheme for multiplicative transformation if the student is

able to transform a fractional quantity into any other fractional quantity, and if the student is explicitly aware of

the involved fractional operator.

5) A proportional reasoning can be understood as a form of a mathematical reasoning that involves a sense of

multiplicative co-variation of two different quantities under the same multiplicative transformation.
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IV. Data Analysis

1. Measuring-out a Whole Number Quantity

with a Remainder

For a situation to be established as divisional, it

is always necessary to establish at least two composite

units, one composite unit to be segmented and the

other composite unit to be used in segmenting.

The goal is to find how many times one can use

the measuring unit [the unit to be used in

segmenting] with a given unit to be segmented.

However, when the composite unit to be segmented

is not completely measured out by the unit used

in segmenting [when producing a remainder], the

divisional situation might be assimilated as novel

and lead to perturbation in a student’s use of her

unit-segmenting scheme because the result of a

unit-segmenting scheme produces a fractional quantity

in terms of the segmenting unit. Since Carol and

Rosa were eighth-grade students, we already knew

that they had a certain amount of fractional

knowledge. Through a year of teaching experiment

(with Carol) and pre-interview (with Rosa), we

attributed to the students construction of (at least)

partitive fraction schemes.6) Therefore, we decided

to begin our teaching experiment with a whole

number division problem that produces a remainder.

In all of the following protocols, R stands for

Rosa, C for Carol, T for the teacher-researcher

(the first author), and W for a witness-researcher.

Protocol IV-1: Finding how many times 3 meters

is contained in 5 meters.

T: How many times is three meters contained in

five meters?

(Both students write down the problem on their

own paper. Rosa divides five by three using a

division algorithm and gets 1.6 as an answer.)

C: Hmm… this is hard.

R: You want this in fraction form?

T: Yeah, I prefer to fraction form.

R: Okay.

T: You don’t necessarily calculate in decimal form.

R: Yeah. I don’t, how would, hmm…in decimal,

okay. (Rosa draws a 5-part bar, shades three

parts out of the five parts and writes down ‘3/5’

under the circled three parts and ‘1 time’ over

the shaded three parts. Then, she writes 2/5

under the left two parts. See Figure IV-1a).

(To Carol) how did you work it out? I don’t

know.

C: I divided it.

R: I divided it too. But you have to show in

fraction form.

C: I got point six.

R: You got point six? I got one point six because

three…

C: Because five goes into thirty six times and then

I plotted a decimal point.

R: Yeah, but three can go into five one time.

C: But your… but it’s not three going into five.

It’s three meters in five meters.

R: So you do five divided by three.

C: Oh, wait. I did it backwards. You’re right. Don’t

listen to me.

R: Okay. (Rosa resumes her work. She divides each

part of the whole 5-part bar into two and writes

down ‘6/10’ right to the next of ‘3/5’ and ‘4/10’

to the next of ‘2/5’)

T: Carol, you don’t necessarily calculate in decimal

form. Just think about in fraction form.

C: Okay.

6) A partitive fraction scheme is the first scheme to be a genuine fractional scheme (Steffe, 2002). It enables a

student to establish a substantial but limited understanding of fractions as parts of a specific partitioned whole

(Tzur, 1999)
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<Figure IV-1a & 1b> Rosa’s (left) & Carol’s (right) drawing to find her fraction answer

R: In fraction form.

T: Yeah.

Carol and Rosa assimilated the problem as a

divisional situation. Such assimilation of the problem

situation activated their division algorithm although

Carol conducted division calculation in a reverse

way, that is, three divided by five rather than five

divided by three. However, since they already knew

that the teacher-researcher always prefers a fraction

form to a decimal form as an answer, Rosa’s

attempt to find her fractional answer prompted her

to think about the part-whole relationship between

five meters and three meters and she drew a 5-part

bar with three parts shaded. Rosa seemed to try

to find her decimal answer,1.6, in her drawing by

dividing each of the five parts into two (cf. Figure

IV-1a), which gave her two fractions with a

denominator, ‘10’ [6/10 for 3/5 and 4/10 for 2/5]

for each part. However, she could not connect her

decimal answer 1.6 to her drawing because she

took the five parts as a referent whole rather than

the shaded three parts. Considering their multiplicative

reasoning with whole numbers, they must have

been able to find the answer very easily for a

simple whole number division problem, say, to find

how many 3 meters are contained in 6 meters.

Therefore, the struggle that the students demonstrated

above indicates that to find a fractional answer

for a whole number division problem involving a

remainder was a novel situation for them, which

led them to experience perturbation in using their

unit-segmenting scheme.

Protocol IV-1: (Cont.)

R: It’s gonna be one and then something fraction.

C: This is hard.

T: It’s not an easy problem.

R: All right. Let me try something.

W: (Witness-researcher intervenes.) Can you draw

five meters, Carol?

C: I am.

W: Okay. (Carol draws two different-sized bars and

divides the smaller bar into three parts and

the larger bar into five parts.)

R: Is that it? One and six-tenths?

T: One and six-tenths?

R: Is that what you’re looking for?

W: (Witness-researcher points out ‘2/5’ on Rosa’s

paper.) You have two-fifths here.

R: See. What I did just um…I doubled it. So I

did six meters in ten meters because ten can

go into a hundred and then percents can go

into decimals or fractions or….

W: I want you, (Witness-researcher points out Rosa’s

5-part bar) I want you to use this up here,

not (inaudible) decimal.

R: Well if you…

T: Use these numbers in a similar way.

C: Would it be one and two-thirds?

T: One and two-thirds?

C: Yeah.



- 199 -

T: How did you figure out it?

C: Um, because it goes in once and there is two-

thirds of that leftover (see Figure IV-1b). Is

that right?

R: I don’t know how you...

T: Yeah, can you explain it to Rosa?

C: It’s like what you are doing except that I

compared the two, like if you have three and

you have five (pointing out the 3-part bar) it

goes in once and since it was three pieces

there is two of three pieces left.

R: There is two-thirds, okay I see now. All right.

Okay.

W: What is that two-thirds out there?

R: Two-thirds of the total three-thirds that are

(inaudible). Okay. I got it now. I see. I got it.

Carol seemed to be stuck with the problem

indicated by the repeated comments, “This is hard”

However, Rosa’ comment, “It’s gonna be one and

then something fraction.” seemed to activate Carol’s

unit-segmenting operation as an assimilating operation

for this problem and lead her to draw a 3-part

bar and a 5-part bar to compare two quantities (cf.

Figure IV-1b). We make this conjecture based on

the fact that Carol was already drawing her two

bars on her paper when the witness-researcher attempted

to help her by asking “Can you draw five meters?”

Once Carol set the goal of measuring the 5-meter

bar with the 3-meter bar, she realized the answer,

one and two-thirds and her explanation indicated

that she constructed a three-levels-of-units structure

as a result of her unit-segmenting operation. In

other words, the 5-meter bar was not only five

units of 1-meter, but also one unit of a 3-meter

and two-thirds of the 3-meter for Carol. It can be

viewed as similar to construction of a multiplicatively

nested three-levels-of-units structure, say, six as two

units of three, but it should be more than that

because five was not a multiple of three, which

means it necessarily produced a fractional remainder

as a part of the measuring unit, three. We conjecture

that her partitive fraction scheme contributed to her

construction of such a three-levels-of-units structure.

When she got 2 meters as a result of her unit-

segmenting operation by 3 meters from 5 meters,

the result of the unit-segmenting operation turned

into a situation for her partitive fraction scheme,

which led her to view 2 meters as two-thirds of 3

meters. We hypothesize that the goal of measuring

a quantity that produces a remainder, can be fulfilled

by a generalizing assimilation of students’ unit-segmenting

scheme. When assimilating operations of a unit-segmenting

scheme are modified and contain a partitive fraction

scheme as a sub-scheme, the unit-segmenting scheme

is generalized to include the records of the operation

of constructing a part-whole fractional relationship

with any two quantities. In other words, a student

becomes aware of the need to measure the

remainder of the division problems by establishing

a part-whole relationship between the leftover and

the measuring unit [the unit used in segmenting].

On the other hand, Rosa, although she initiated

Carol’s unit-segmenting scheme, did not seem to

associate the result of her unit-segmenting scheme

and her fraction scheme. Since Rosa joined our

teaching experiment as a new partner of Carol, we

did not have enough information about her

construction of fraction schemes at this point in

the teaching episode, although we hypothesized that

she had constructed a splitting operation based on

her pre-interview. What can be conjectured from

this protocol is that her attempt to find a fraction

answer enticed her to take the biggest quantity

(five meters) as a referent whole. Since she
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already knew that 1.6 was an answer, Rosa kept

trying to convert her drawing into a decimal form

regardless of the teacher-researcher's insistence of a

fraction form. Until Carol provided her explanation,

Rosa did not realize that the 3 meters should be a

referent whole nor associate her unit-segmenting

scheme and her fraction scheme. Even though Rosa

immediately assimilated Carol’s explanation later,

whether the relation that Rosa established between

her unit-segmenting scheme and her partitive fraction

scheme was an embedding of her partitive fraction

scheme into her unit-segmenting scheme or just a

sequential chain of associations was still to be

investigated. She may have constructed an associative

chain of schemes, where any scheme in the chain

was triggered by the results of the scheme

immediately preceding, but she was unable to

independently use her scheme.

When Carol was asked a similar question, “How

many times is five meters contained in seven

meters?” right after the protocol IV-1, she demonstrated

that her partitive fraction scheme was embedded in

the assimilating part of her unit-segmenting scheme.

She said, “it’s gonna be the same” and immediately

drew a 5-part bar and a 7-part bar to get one and

two-fifths. It also indicated that Carol anticipated

that the remainder could be dealt with by using

her partitive fraction scheme prior to conducting

an actual unit-segmenting operation. In contrast to

Carol, Rosa used the division algorithm for her

answer again and got 1.4. Although she easily

converted 1.4 to one and four-tenths and then to

one and two-fifths, whether her division algorithm

was used as a part of assimilating operations for

her unit-segmenting scheme was uncertain at that

time.

2. Measuring a Whole Number Quantity with

a Fractional Quantity, which does not

Evenly Divide the Whole Number Quantity

The teacher-researcher decided to ask a division

problem involving a fractional divisor. They might

be able to solve it if the whole number quantity

to be segmented was evenly divisible by the fractional

divisor used in segmenting, but what we were

interested in was the problem situation where the

fractional divisor does not evenly divide the whole

number quantity and produces a remainder.

Protocol IV-2: Measuring 4 gallons of water with

3/4 gallon of a container.

T: I have only four gallons of water, how many

times do I take out?

R: How many three-fourths?

T: Yeah, with three-fourths.

(Rosa starts writing numerical expressions of a

conventional division algorithm, but seems to hesitate

to go on with her calculation process. On the other

hand, Carol draws a 4-part bar for 4 gallons on

her paper and put a line for every one and a

half gallons and shades two of one and a half

gallons on her 4-part bar. See Figures IV-2a &

IV-2b).

R: Okay, going to have to be...

C: Is it four and two-thirds?

R: See, that’s what I’m about to get. Cause I know

four scoops is three hundred which is like...

T: That’s very close.

C: (Disappointedly) Oh... (Carol and Rosa resume

their solving activity.) It’s three and two-thirds?

(Teacher answers in the negative.) Oh...

T: (To Carol) What are you trying to do?

R: Is it five and one-third?

T: Five and one-third.

R: No, it’s not five. It’s no way.

C: It could be five.

T: I didn’t say no.
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C: It could be five. Because one, two, three, four

(Carol seems to count the number of three-fourths

in her 4-part bar for 4 gallons of water.)

T: Five and one-third is right.

R: It is? Oh, do you want me to show you how

I did it? I have to do everything like in a

problem situation like I can’t just use pictures.

(To Carol) do you want me to show how I

did it?.

C: (Twenty seconds elapse) yeah, that’s what I

got. Five and one-third. I’ll tell you what I did

after you’re done.

R: Okay, what I did is I knew that four hundreds

was a whole so I just did four over one and

multiplied it times four over three, which is

like the... which is basically four over one divided

by three-fourths. I did four hundreds divided by

point seventy five. And then I got sixteen over

three (see Figure IV-2a) and I just made it...

T: Why did you multiply four-thirds?

R: It’s what I was intending to do was four over

one divided by three-fourths but you have to

change it to four over one and make it it’s

like multiplied by its reciprocal.

C: What I did is, I have four gallons and then I

did like, I couldn’t [do what I] did with the last

one, and divided it into one and a half on

each but then I just started off doing I found

two whole ones and times two and I got four

and two-thirds [of one and a half.] Then I

was thinking what you were saying like how

you get. And then I realize you can have an

extra one because you have an extra. Then I

got six, then there is the two extra leftover

one from the cup. So I minused two-thirds

from the six from the leftovers, and I got five

and one-third.

T: Can you say that again? How did you figure

out the last extra one?

C: The left extra one? Because you only had so

much left of the top of the gallon you could

scoop out, then you have left over two-thirds.

T: Two-thirds? Two-thirds of what?

C: Two-thirds of a little cup.

R: I see what you’re saying, but I’m just don’t

understand your drawing, but I know what

you’re saying.

<Figure IV-2a & IV-2b> Rosa’s division

algorithm (left) & Carol’s drawing for measuring

out 4 gallons with 3/4 of a gallon (right)

Rosa could associate a measuring-out situation

with a division problem situation. However, she

seemed stuck when she realized that four cannot

be evenly measured out by three-fourths. That is,

she seemed to feel perturbation associating the result

of her numerical division calculation with that of

her unit-segmenting scheme when the result produced

a remainder. It corroborated that the relationship

between her unit-segmenting scheme and her partitive

fraction scheme was just an association, not that

her partitive fraction scheme was embedded into

the first part of her unit-segmenting scheme. The

fact that Rosa independently could not deal with

the remainder of her numerical division calculation

result indicated that her partitive fraction scheme

(if she had constructed one) was not embedded as

an assimilating operation of her unit-segmenting

scheme. Rather, the result of her unit-segmenting

scheme was possibly associated to the situation of

her partitive fraction scheme by the additional cue
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from an external source like Carol’s mathematical

behavior. Her comment, “That’s what I’m about to

get. Cause I know four scoops is three hundred”

also corroborated that her use of a division algorithm

still symbolized her unit-segmenting operations with

a fractional quantity. However, the realization that

her unit-segmenting scheme did not work for this

problem induced Rosa to try another division

algorithm, the invert-and-multiply algorithm for fraction

division problems (cf. Figure IV-3). Even though

Rosa found the answer, five and one-third, her

fraction division algorithm seemed disconnected to

her unit-segmenting scheme. The result of her numeric

calculation no longer seemed to symbolize her

unit-segmenting operations. Her insecurity about the

answer right after she provided it, “No, it’s not

five. It’s no way.” and her justification about the

answer depending only on the invert-and-multiply

algorithm process for fraction division corroborated

that her unit-segmenting scheme was yet to undergo

an accommodation whereby her partitive fraction

scheme was embedded in it as a sub-scheme. Further,

Rosa’s comment at the end of the protocol after

Carol explained the answer using her drawing,

indicated that such accommodation was not a simple

process for her.

<Figure IV-3> Rosa’s invert-and-multiply

algorithm

Interestingly, Rosa’s answer of division calculation

using an invert- and-multiply method helped Carol

reflect her unit-segmenting operation and find the

right answer. Carol’s drawing definitely indicated

that she conducted her unit-segmenting operations.

Her first answer was four and two-thirds rather than

five and one-third. Her mistake appears to have come

from the conflation of units used in segmenting. As

in Figure IV-2b, her unit to be used in measuring

out 4 gallons of water was 1 and 1/2 gallons of

water, rather than 3/4 of a gallon given in the

problem. The reason she chose 1 and 1/2 gallons as

a segmenting unit seemed due to the convenience

of actual drawing on the paper, that is, putting a

line for a half was much easier than finding a

mark for 3/4 of a gallon. She measured 3 gallons

as twice of 1 and 1/2 gallons and doubled it

because her unit was originally 3/4 of a gallon.

However, the change of her segmenting unit caused

a conflation of units in segmenting when dealing

with the remainder as a result of her unit-segmenting

operations. She accidently measured the remaining 1

gallon with 1 and 1/2 gallons, rather than measuring

it with 3/4 of a gallon, which led her to get four

and two-thirds for the final answer. Even with the

inaccurate use of her unit-segmenting operations, we

do not believe that the mistake alleviated our

conjecture that Carol’s partitive fraction scheme was

already embedded in her unit-segmenting scheme and

she had constructed a newly modified unit-segmenting

scheme at a higher level because she immediately

self-corrected her answer from Rosa’s new answer.

In spite of Rosa’s uncertainty about the answer, Carol

independently assimilated Rosa’s answer as a new

possibility. Rosa’s answer seemed to help Carol re-

conceive her segmenting unit and re-initiate her unit-
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segmenting operations. Then she realized that three

of 1 and 1/2 gallons of water, which also were six

of 3/4 gallon of water, covered more extras in

addition to 4 gallons of water. This time, she

explicitly measured the surplus with 3/4 of a gallon

and finally got five and one-third by subtracting

two-thirds from six.

3. Rosa’s Construction of a Unit-Segmenting

Scheme with a Remainder through Retrospective

Accommodation

Protocol IV-3: Finding how many times 3/5-meter

is contained in 1 meter.

T: How many times is three-fifths meter contained

in one meter?

R: Three-fifths of a meter?

T: Um-hm.

(Both students draw a 5-part bar and shade three

parts of the 5-part bar on their own paper. However,

Rosa starts writing numerals for calculation of

fraction multiplication as ‘5/5x5/3=25/15’ )

C: One and two-thirds?

T: (Teacher nods his head) one and two-thirds.

R: Hold on.

T: (To Rosa) that’s fine. Take your time.

R: Did you get five and three-thirds?

C: No.

T: Five and three-thirds?

R: (Rosa compares her answers with Carol’s) or

one and two-thirds. That’s the same thing.

T: Yeah, one and two-thirds is right, but um… Can

you explain your way, Carol?

C: Um… I just started up by drawing a bar, divided

it into fifths. And then I have three of the fifths,

which is what I was asked for. So I already

knew I had one and there are two leftover out

of the three pieces so I have two-thirds.

T: So two pieces is… Can you say that again why

two pieces is two-thirds?

C: Two pieces is two-thirds because, if that (three

parts)’s one, and it’s three-thirds or three over

one. Then you only have two. It would be

two-thirds.

T: Okay.

R: Okay. I do, I have to do everything like with

an equation. So I just did five over five which

is the one meter times five over three or just

divided by three-fifths and I just reduced it

down and got one and two-thirds.

T: Um-hm. Did you see...

R: I know, I know how she did it. Because this

(three parts) is one and then there is two here.

So there is two out of that three. I see how

she did it, but I would like this anyway.

T: So, what do you think, this one (two unshaded

parts) is two-thirds of what?

R: Two-thirds of this way here (three shaded parts).

T: Yeah, two-thirds of three-thirds. Right?

R: Yeah.

W: Rosa, can you tell us how you thought about

that?

R: First I started drawing it. But then I thought,

you know, it’s three-fifths into one, five-fifths.

So I just thought it is a division problem and

um… I just did five over five divided by

three-fifths. You have to multiply and make

the reciprocal. Then I just reduced it down

and that’s how many times three-fifths is in

one meter.

In Protocol IV-1, Rosa seemed to construct a

unit-segmenting scheme with remainder or at least

associate a result of her unit-segmenting scheme

with a situation for her partitive fraction scheme. At

that time, although the construction was initiated

by Carol, Rosa exclaimed that she understood what

Carol did. However, this protocol demonstrated

that Rosa had yet to construct a unit-segmenting

scheme with a remainder as an anticipatory scheme.

Even though there was no difference between the

two students’ drawings of a 5-part bar for one
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<Figure IV-4a & IV-4b> Carol’s (left) and Rosa’s (right) drawings for measuring 1-meter with

3/5-meter

meter and three shaded parts for 3/5-meter (see

Figures IV-4a & IV-4b), Rosa failed to conceive

the remaining two-fifths of a meter as two-thirds

of the segmenting unit, 3/5-meter and went back

to relying on an invert-and-multiply algorithm for

fraction division calculation in contrast to Carol’s

immediate realization of the answer from her

drawing.

When Rosa got ‘25/15’ and ‘5/3’ in her

calculation, she did not know the meaning of the

result of her fraction division calculation in a

quantitative sense. This was corroborated by her

comments, “Did you get five and three-thirds?” when

Rosa was asking Carol for the confirmation of her

answer. We do not believe Rosa was unable to

distinguish five-thirds from five and three-thirds.

Rather, even though she got the right answer using

an invert-and-multiply algorithm for fraction division,

she did not seem to realize that the answer [five-

thirds] times the 3/5-meter should be 1-meter

quantitatively because the answer was what she got

by dividing 1-meter by 3/5-meter. That is, the result

of her calculation did not stand in for the

multiplicative relationship between 1-meter and 3/5-meter

that 1-meter could be constructed by multiplying by

five-thirds the 3/5-meter even though she was actually

taking perceptual information from her drawing of a

5-part bar with three parts shaded. Therefore, such

lack of confidence for her answer gave her a

temporary confusion in identification of the answer,

and the confusion was not eliminated until Rosa

compared her answer with Carol’s answer. As

indicated in the Protocol IV-1, Rosa quickly assimilated

Carol’s way of construction and was able to explain

with her own words. Since we knew that she had

already constructed necessary conceptual elements for

a unit-segmenting scheme with remainder, a unit-

segmenting scheme and a partitive fractions scheme,

somehow we can attribute construction of a unit-

segmenting scheme with a remainder to Rosa. However,

if the conceptual elements were selected and used by

herself only as a result of interactive communication

with Carol, we would attribute to her the construction

of a unit-segmenting scheme with a remainder

through retrospective accommodation.7)

7) A retrospective accommodation involves selecting and using conceptual elements already constructed. From the

student’s perspective, a retrospective accommodation is self-initiated in that it is the student who must select and

use the concept. From an observer’s perspective, the conceptual elements may by selected as result of interactive

communication (Steffe & Wiegel, 1994)
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4. Construction of a Fractional Unit-Segmenting

Scheme

The following protocol was extracted from a

teaching episode almost five months after the previous

Protocol IV-3. Although the overarching goal of

the teaching episode was to investigate the students’

mathematical actions and operations emerging in

their transformation activities between two (fractional)

quantities, at that time we also desired to attempt

several fraction measurement division problems before

the academic semester was over.

Protocol IV-4: Measuring an 11/19-meter bar with

a 4/19-meter bar.

(The problem is “If you measure an 11/19-meter bar

with a 4/19-meter bar, how many 4/19-meter bars

are contained in the 11/19-meter bar?” Rosa already

wrote down her answer for the problem on

paper.)

T: Rosa, you said that the answer was...

R: Oh, it’s two and three-fourths.

T: Why do you think like that? Can you tell me

why...

R: Okay, um... I, when I took its numerators, how

many times four go into eleven, and that’s

two times with three remaining...

T: Um-hm.

R: Actually, it’s not three-fourths. It’s three-nineteenths.

C: Yeah, because there is three pieces of a... We

got the four because yours just...

T: Three-nineteenths?

C&R: Yeah, three-nineteenths.

T: Why did you change?

C: Because nineteenth is the denominator from all

of them.

R: Yeah, and that’s what you’re measuring with,

not fourth.

T: So, if you measure four with, measure eleven-

nineteenths with four-nineteenths...

R: If you get two and three-nineteenths...

T: Two and three-nineteenths of what?

R: That’s how many times four-nineteenths can

go into eleven-nineteenths.

T: So, you said that three and, three-nineteenths

of...four-nineteenths is contained in eleven-nineteenths?

R: No, because if you take four-nineteenths times

two over one, it’s eight-nineteenths and there

is three left to get to eleven-nineteenths. So,

it’s gonna be two and three-nineteenths. That’s

how many times goes in.

T: So, how many times goes,

R: Two and three-nineteenths.

T: Two and three-nineteenths?

R: Um-hm.

....

T: Okay, let me pose another question and we will

back to this problem. So, can you see the

numbers here? Seven-seventeenths, yeah, seven

over seventeen and sixteen over seventeen. What

number do you have to multiply by to seven

over seventeen to get sixteen over seventeen?

R: Two... and... two seventeenths?

T: Two and ...

R: Two-seventeenths?

T: Two-seventeenths?

C: Cause seven times two is fourteen and there

is two leftover.

T: Two-seventeenths? Can you confirm your answer?

Using paper and pencil or whatever, using JavaBars.8)

C: Can we use the GSP?

T: Uh, I don’t think I have. I need a CD. You

can, then can you calculate, by calculation can

you confirm your answer? What was your answer?

Seven and... Two and what?

C: Two and two-seventeenths.

T: Two-seventeenths. So...

(Rosa makes some bars in JavaBars and Carol tries

to use calculation for confirmation of her answer.)

8) JavaBars is a computer program that opens the possibility for students to create an arbitrary rectangle with indefinite

area and enact a variety of different operations (i.e., partitioning, disembedding, iterating, etc.)
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<Figure IV-5a & IV-5b> Rosa’s (left) and Carol’s (right) constructions to measure 16/17-meter with

7/17-meter

C: Wait, that will be hard to reduce it.

R: Copy. Pull out. (To Carol) did we say two-

seventeenths?

C: Can I do it on JavaBars? This is hard to

write it down.

T: Okay.

C: So do we start with seven right?

R: (Rosa has two 7-part bars and one 2-part bar

on the screen now. See Figure IV-5a) You

know, it might be two-sevenths.

C: (Carol has three 7-part bars on her screen.)

Because you do...

R: Cause the seven pieces is what you’re starting

with.

C: That’s what I was thinking eleven-fourths.

R: See, that’s what I was thinking four right here.

That’s what I thought. Two and three-fourths.

But, then I was like, but it’s four-nineteenths.

So I was thinking three-nineteenths. But maybe

I was right at the first time.

(Carol now has two 7-part bars and one 2-part

bar on the screen.)

R: Because it’s two out of the seven pieces. Because

you have only seven pieces, not all seventeenths.

Right?

....

C: We know it’s two and two-sevenths.

T: Two and two-sevenths?

C: Seven-seventeenths to get sixteen-seventeenths.

T: Why do you think seven, two and two-sevenths?

C: Because I was just thinking... (Carol clicks and

drags the 7-part bar to measure the 16-part bar

by moving the 7-part bar along the 16-part bar

from the leftmost part. See Figure IV-5b.) There

is one whole, two whole, and then two-sevenths

leftover. I’m trying to figure out.

Rosa’s first answer was two and three-fourths,

which was correct, but she changed her answer

into two and three-nineteenths. She seemed to

reflect on her unit-segmenting operations while

explaining her answer to the teacher-researcher.

When she got three pieces leftover as a result of

her unit-segmenting operations in reflection, she

conflated her unit to be used in segmenting [4/19]

with a unit [1] given in the problem to measure

the leftover [3/19]. Carol immediately agreed with

Rosa’s changed answer. It indicated that Carol

also conflated units in using her unit-segmenting

scheme as Rosa did, which was identified in her

comment, “Because nineteenth is the denominator

from all of them.”

In response to the students’ conflation of units

in dealing with the leftover on the basis of their

unit-segmenting schemes, the teacher-researcher posed

another similar question. His intention was to check

whether their conflation was lasting because Carol

and Rosa had already constructed unit-segmenting

schemes with a remainder where the whole number

divisor does not evenly divide the whole number

dividend. When the teacher-researcher asked them

to measure 16/17-meter with 7/17-meter, their answer

was two and two-seventeenths, not two and
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two-sevenths. Until both Carol and Rosa constructed

two 7-part bars and one 2-part bar and conducted

their unit-segmenting operations with those perceptual

materials on JavaBars, they could not realize that

the two leftover should be measured in terms of

the 7-part bar [7/17-meter], not measured as a length

with regard to the given referent whole [1-meter].

Perceptual material [two 7-part bars and one 2-part

bar] on JavaBars and implementation of unit-

segmenting operations with them obviously helped

the students evoke their units-segmenting schemes

with a remainder, which worked properly for this

problem situation.

Our conjecture is that Carol’s and Rosa’s conflation

of units might be due to the evocation of their

unit-segmenting schemes but without iterability of

unit fractions [1/19 and 1/17] in assimilating the

fraction measurement division situation. In other

words, if they had been able to see 7/17 as seven

units of 1/17 each of which can be iterated seven

times to make 7/17-meter and also sixteen times

to make 16/17-meter prior to activity, they could

have assimilated the problem as a situation of their

unit-segmenting schemes with remainder as ‘16÷7’.

Actually, they were able to eliminate such confusion

through construction of perceptual materials for their

unit-segmenting operations using JavaBars. Rosa

finally seemed to be explicitly aware of such a

relationship between 7/17 and 16/17 with regard

to 1/17. She knew that each piece of seven parts

was 1/17-meter because “seven pieces is out of the

seventeen”. Moreover, she also realized that the

leftover two parts should be measured in terms of

seven-seventeenths because “you only have the seven

pieces.” Similarly, Carol manifested her unit-segmenting

operations with her 7-part bar using JavaBars.

She clicked and dragged the 7-part bar to measure

the 16-part bar by moving the 7-part bar along

the 16-part bar from the leftmost part.

In sum, comparing with a whole number division

problem where the divisor does not evenly divide

the dividend, this sort of problem involving two

fractions [16/17 and 7/17] seemed to require the

students to conduct their unit-segmenting scheme

with a remainder based on their use of FCNS as

given material. Therefore, when the iterability of a

unit fraction is interiorized and embedded in the

assimilating part of a unit-segmenting scheme with

a remainder, we would call such a modified scheme

a fractional unit-segmenting scheme in the sense

that assimilating situations of the scheme include

fraction measurement division situations involving

fractional numbers.

V. Conclusion

Students’ construction of unit-segmenting schemes

has been studied in whole number measurement

division situations, where one composite unit to be

used in measuring, evenly divided the other composite

unit to be measured, and the goal of which was to

find how many times the measuring unit was used

in segmenting the other unit to be measured (Steffe,

1992). However, relatively little research has been

carried out for studying how the unit-segmenting

schemes could be modified in measurement divisional

situations involving fractional quantities.

Based upon the data analysis in our teaching

experiment, the following diagram (Figure V-1)

illustrates a possible progression of students’ unit-

segmenting operations and schemes, on the basis of
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their generalized number sequences (GNS) and fractional

connected number sequences (FCNS).

<Figure V-1> A possible constructive path of

modifications of a unit-segmenting scheme for

fraction measurement division problems

First, we suggested that by embedding the

participating students’ fraction schemes into the first

part of their unit-segmenting schemes, they were

able to deal with a remainder when measuring a

whole number quantity with another whole number

quantity that did not evenly divide the dividend,

producing a unit-segmenting scheme with a remainder

(cf. Protocol IV-1). A scheme embedded in another

scheme needs to be distinguished from just an

association of two schemes. When a scheme embeds

another scheme in the first part of the former

scheme, it means the latter scheme is ready at

hand to be used as the former scheme is activated.

On the other hand, when two schemes are associated,

those two schemes are executed sequentially, rather

than simultaneously. It requires students to

re-assimilate the result of the first scheme as a

situation of the second scheme. Continuing upward

in Figure V-1, as students’ fractional connected

number sequences become interiorized, that is,

available as a given structure prior to actual actions

of their unit-segmenting operations, the students’

unit-segmenting schemes with a remainder would be

modified into fractional unit-segmenting schemes so

that they could cope with measurement division

problems involving fractional quantities (cf. Protocol

IV-4). Further, we conjecture that in order for the

fractional unit-segmenting scheme to be generalized

to solve a question like ‘measuring a 1/3-meter

bar with a 1/7-meter bar’, it would be necessary

for students’ common partitioning operations to be

associated with the fractional unit-segmenting scheme.

That is, the common partitioning operations enable

the students to convert the division problem situation

between the two unit fractions above [1/3÷1/7] into

a situation for their fractional unit-segmenting

scheme [7/21 ÷ 3/21].9)

The present study confirms the grand assumption

of the Fraction Project’s Reorganization Hypothesis,

which argued that children would construct their

fraction schemes through modifications of whole

number operations based on their abstract number

sequences. Further, this study supports that students’

construction of the operations that produced a GNS

opened possibilities for their constructive activity that

could not be observed in the students to whom the

construction of only an ENS was attributed. The

two participating students with a GNS in the present

9) We realized that the conjecture regarding common partitioning operations was plausible, but it was not supported by

the data in this study.
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study demonstrated constructions of more advanced

fractional schemes and operations, especially in the

context of divisional situations, which were not

reported in the previous literature.

In addition, the current research results imply that

students’ interiorization of an iterability of unit

fractions, i.e. to take their FCNS as given prior

to activity, needs to be considered as a critical

factor in establishing viable second-order models

for students’ construction of more advanced fractional

knowledge. In spite of the great potential for

mathematical developments that the participating GNS

students indicated in this study, the interiorized use

of their FCNS was not evident. Actually, in the

previous research literature, to establish a multiplicative

relationship between a unit fraction and a referent

whole in the process of modification of a partitive

fraction scheme into an iterative fraction scheme,

has been considered a big leap in the development

of students’ fractional knowledge. This leap enables

the students to expand a fraction concept beyond

the whole to include improper fractions (Tzur, 1999;

Steffe, 2002; Steffe & Olive, 2010). However, this

study additionally implies that 1) students’ interiorization

of such a multiplicative relationship of unit fractions

to a referent whole and further 2) their being

able to utilize the iterability of unit fractions as

given for other mathematical activities, are not

spontaneous transitions from the construction of a

FCNS in action. These two developments require

another level of vertical learning on the part of

the students.

Finally, it is worthy of note that Rosa’s outstanding

calculation ability for fraction division, which was

based on procedural algorithms learned in school,

seemed to play as an obstacle for her to develop

necessary mathematical schemes and operations for

advanced fractional knowledge during the teaching

experiment. Rosa’s struggles, due to her inclination

to rely on her procedural algorithms, implies that

the aims and methods for teaching fractions in

school mathematics need to be seriously reconsidered.

Mathematical competence cannot be reduced to

proficiency in calculation. That is, students’ mathematical

competence is not indicated solely by computational

results or performances. Rather, results of students’

calculating performances become meaningful only

when the results are symbolizing the students’

mental mathematical schemes and operations involved

in their problem-solving processes. Often, Rosa could

not use her results of calculation for fraction

division in establishing a quantitative relationship in

the context of problem situations. Her experiencing

such difficulty casts a question about building a

curriculum for school mathematics on the assumption

that students’ training procedures and skills constitute

essential steps in their further mathematical learning.

The present study, therefore, implies that we, as

mathematics teachers, should be able to provide

our students opportunities to construct meaningful

mathematical structures, processes and symbols for

those processes, based on their own mathematical

operations, rather than convey simple operational

rules as pre-packaged products for the students.
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단위분할 도식의 재구성을 통한 포함제 분수나눗셈

문제해결에 관한 연구

신 재 홍 (한국교원대학교)

이 수 진 (몽클레어주립대학교)

학생들의 산술 활동 (수의 사칙연산) 학습

에 관한 연구 중 분수량을 포함한 나눗셈 문

제의 해결을 위한 자연수 지식의 활용을 상세

히 다룬 연구가 매우 부족한 실정이다. 교수실

험이 연구방법으로 사용된 본 정성연구에서는,

일년간 행해진 교수실험 중 일부 자료의 분석

을 바탕으로 다양한 포함제 분수나눗셈 상황

을 해결하기 위해 어떻게 자연수 나눗셈의 기

본이 되는 단위분할 도식을 수정, 구성해 나갈

수 있는지에 대한 가능한 발달 경로(나머지가

있는 단위분할 도식, 분수 단위분할 도식)를

제시하고 있다. 따라서 본 연구는 다른 수 체

계(자연수, 분수)에서 같은 종류의 연산(나눗

셈)에 대한 조작적 연결성을 고찰함으로써 현

재 학생들이 가지고 있는 수 연산에 관한 분

절적 이해를 올바르게 지도할 수 있는 방안을

제시한다.

*key words : unit-segmenting scheme (단위분할 도식), partitive fraction scheme (부분 분수 도

식), fractional connected number sequence (분수 연속 수열)
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