• Title/Summary/Keyword: white ginseng saponin

Search Result 86, Processing Time 0.019 seconds

Change of Ginsenoside Profiles in Processed Ginseng by Drying, Steaming, and Puffing

  • Shin, Ji-Hye;Park, Young Joon;Kim, Wooki;Kim, Dae-Ok;Kim, Byung-Yong;Lee, Hyungjae;Baik, Moo-Yeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.222-229
    • /
    • 2019
  • Korean ginseng (Panax ginseng Meyer) was processed by drying, steaming, or puffing, and the effects of these processes on the ginsenoside profile were investigated. The main root of 4-year-old raw Korean ginseng was dried to produce white ginseng. Steaming, followed by drying, was employed to produce red or black ginseng. In addition, these three varieties of processed ginseng were puffed using a rotational puffing gun. Puffed ginseng showed significantly higher extraction yields of ginsenosides (49.87-58.60 g solid extract/100 g of sample) and crude saponin content (59.40-63.87 mg saponin/g of dried ginseng) than non-puffed ginseng, respectively. Moreover, puffing effectively transformed the major ginsenosides (Rb1, Rb2, Rc, Rd, Re, and Rg1) of ginseng into minor ones (F2, Rg3, Rk1, and Rg5), comparable to the steaming process effect on the levels of the transformed ginsenosides. However, steaming takes much longer (4 to 36 days) than puffing (less than 30 min) for ginsenoside transformation. Consequently, puffing may be an effective and economical technique for enhancing the extraction yield and levels of minor ginsenosides responsible for the major biological activities of ginseng.

Changes in the Chemical Components of Red and White Ginseng after Puffing (팽화 가공에 따른 홍삼과 백삼의 성분변화)

  • Kim, Sang-Tae;Jang, Ji-Hyun;Kwon, Joong-Ho;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.16 no.3
    • /
    • pp.355-361
    • /
    • 2009
  • In this study, raw ginseng produced by different methods was puffed, and physicochemical properties were analyzed and compared. Raw ginseng included white ginseng lateral root (WGL), red ginseng lateral root (RGL), red ginseng main root (RGM), and red ginseng main root with 15% (w/w) moisture (RGMM). All samples were puffed at a pressure of 7 kg/cm2. Crude saponin content was increased after puffing compared with that of control ginseng. RGM and RGMM showed significant increases in crude saponin content, from 1.67% and 1.41% to 2.84% and 3.09% (all w/w), respectively. However, the ginsenoside content of WGL was decreased after puffing. Rg3, Rh1, and Rh2 values of red ginseng were increased by puffing compared with those of control red ginseng. The total sugar content of ginseng decreased after puffing. The mineral components of puffed ginseng were similar to those of raw ginseng. Levels of total phenolic compounds and antioxidant activities of ginseng were increased after puffing, and electron-donating ability was greatly increased. The acidic polysaccharide content of ginseng increased slightly and the amino acid content decreased due to the high temperature used during puffing.

Present and Future on the Processing of Ginseng (인삼의 가공현황과 전망)

  • 성현순
    • Journal of Ginseng Research
    • /
    • v.10 no.2
    • /
    • pp.218-232
    • /
    • 1986
  • In this review quality improvement, new products and processing of ginseng are discussed. Ginseng products are generally classified into two types; the dried product without significant change in original shape of fresh ginseng and various processed ginseng products in liquid or solid types prepared by addition of either ginseng extract of ground powder. The dried ginsengs are generally made 4 years old fresh ginseng roots for production of white ginseng and 6 years old ones for red ginseng. The processed ginseng products, such as ginseng drinks, extracts, teas, powders, capsules or tablets are prepared by addition of extract or powder of the ginseng roots which contain relatively high amount of saponin. At present, more than 200 items of 40 types of products are commercially available in over 70 countries in the world, Since consummers preference on the quality of ginseng products as an health food differs with their cultural background of each country, new products development and quality improvement should be investigated with concerning the particular preference of the consummers of various country. It has been generally found that the Orientals has higher product acceptance on strong ginseng flavor while the Westerners generally prefers the products having mild ginseng odor and taste. Recently consummers are asking for supplemented type of ginseng products with various medical herbs and vital materials instead of ginseng alone. Therefore future work on product development should be emphasized to meet the consummers demand and preference.

  • PDF

Changes of Ginsenosides and Color from Black Ginsengs Prepared by Steaming-Drying Cycles (흑삼 제조과정 중 증포 횟수에 따른 색상 및 진세노사이드 함량 변화)

  • Nam, Ki-Yeul;Lee, Nu-Ri;Moon, Byung-Doo;Song, Gyu-Yong;Shin, Ho-Sang;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • This study was conducted to investigate changes in composition of ginsenosides and color of processed ginsengs prepared by different steaming-drying times. Processed ginsengs were prepared from white ginseng with skin by 9-time repeated steaming at $96^{\circ}C$ for 3 hours and followed by hot air-drying at $50^{\circ}C$ for 24 hours. As the times of steaming processes increased, lightness (L value) decreased and redness (a value) increased in color of ginseng powders. Crude saponin contents and ginsenosides compositions in processed ginsengs prepared by different steaming-drying times were investigated using the HPLC method, respecively. Crude saponin contents according to increasing steaming-drying times decreased in some degree. In the case of major ginsenosides, the contents of $Rb_1$, $Rb_2$, Rc, Rd, Rf, Re, $RG_1$, Re were decreased with increase in steamimg times, but those of $Rh_1$, $Rg_3$, $Rk_1$ were increased after especially 3 times of steaming processes. Interestingly, in black ginseng were prepared by 9 times steaming processes, the content of ginsenoside $Rg_3$ was 8.20 mg/g, approximately 18 times higher than that (0.46 mg/g) in red ginseng. In addition, the ratio of the protopanaxadiol group and protopanaxatiol group (PD/PT) were increased from 1.9 to 8.4 due to increasing times of steamming process.

A new validated analytical method for the quality control of red ginseng products

  • Kim, Il-Woung;Cha, Kyu-Min;Wee, Jae Joon;Ye, Michael B.;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.475-482
    • /
    • 2013
  • The main active components of Panax ginseng are ginsenosides. Ginsenoside Rb1 and Rg1 are accepted as marker substances for quality control worldwide. The analytical methods currently used to detect these two compounds unfairly penalize steamed and dried (red) P. ginseng preparations, because it has a lower content of those ginsenosides than white ginseng. To manufacture red ginseng products from fresh ginseng, the ginseng roots are exposed to high temperatures for many hours. This heating process converts the naturally occurring ginsenoside Rb1 and Rg1 into artifact ginsenosides such as ginsenoside Rg3, Rg5, Rh1, and Rh2, among others. This study highlights the absurdity of the current analytical practice by investigating the time-dependent changes in the crude saponin and the major natural and artifact ginsenosides contents during simmering. The results lead us to recommend (20S)- and (20R)-ginsenoside Rg3 as new reference materials to complement the current P. ginseng preparation reference materials ginsenoside Rb1 and Rg1. An attempt has also been made to establish validated qualitative and quantitative analytical procedures for these four compounds that meet International Conference of Harmonization (ICH) guidelines for specificity, linearity, range, accuracy, precision, detection limit, quantitation limit, robustness and system suitability. Based on these results, we suggest a validated analytical procedure which conforms to ICH guidelines and equally values the contents of ginsenosides in white and red ginseng preparations.

Correlation between the Content and Pharmacokinetics of Ginsenosides from Four Different Preparation of Panax Ginseng C.A. Meyer in Rats

  • Jeon, Ji-Hyeon;Lee, Jaehyeok;Lee, Chul Haeng;Choi, Min-Koo;Song, Im-Sook
    • Mass Spectrometry Letters
    • /
    • v.12 no.1
    • /
    • pp.16-20
    • /
    • 2021
  • We aimed to compare the content of ginsenosides and the pharmacokinetics after the oral administration of four different ginseng products at a dose of 1 g/kg in rats. The four different ginseng products were fresh ginseng extract, red ginseng extract, white ginseng extract, and saponin enriched white ginseng extract prepared from the radix of Panax ginseng C.A. Meyer. The ginsenoside concentrations in the ginseng product and the rat plasma samples were determined using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Eight or nine ginsenosides of the 15 tested ginsenosides were detected; however, the content and total ginsenosides varied depending on the preparation method. Moreover, the content of triglycosylated ginsenosides was higher than that of diglycosylated ginsenosides, and deglycosylated ginsenosides were not present in any preparation. After the single oral administrations of four different ginseng products in rats, only four ginsenosides, such as 20(S)-ginsenosides Rb1 (GRb1), GRb2, GRc, and GRd, were detected in the rat plasma samples among the 15 ginsenosides tested. The plasma concentrations of GRb1, GRb2, GRc, and GRd were different depends on the preparation method but pharmacokinetic features of the four ginseng products were similar. In conclusion, a good correlation between the area under the concentration curve and the content of GRb1, GRb2, and GRc, but not GRd, in the ginseng products was identified and it might be the result of their higher content and intestinal biotransformation of the ginseng product.

Studies on the Manufacturing of Ginseng Soft Drink II. Effect of pH and heat treatment on the stability of panaxadiol saponins (인삼청량음료 제조에 관한 연구 (제2보) pH 및 처리조건이 Panaxadiol Saponin의 안정성에 미치는 영향)

  • 양재원;도재호
    • Journal of Ginseng Research
    • /
    • v.6 no.1
    • /
    • pp.25-29
    • /
    • 1982
  • This investigation was carried out to study the influence of pH and heat treatment on the ginsenosides in the white ginseng extract. Changes in ginsenosides (Rb1, Rb2, ,Rc, Rd) and free sugar were measured by the peak area variation of HPLC chromatogram during 25 hours heat treatment at the various level of pH. It was found that :(1) The peak areas of Rb1. Rb2, Rc and Rd on the HPLC chromatogram were decreased remarkably below pH 4.0 and more decrease was found as the temperature and heating time increased. (2) Those of glucose and arabinose were increased remarkably. It is considrered that the increase of glucose and the formation of arabinose result from the hydrolysis of ginsenoside( Rb1, Rb2, Rc, Rd) linked with sugars.

  • PDF

Effects of Compositions of Saponin Fraction from Korean Red Ginseng in the Relaxation of Rabbit and Rat Corpus Cavernosum (토끼와 흰쥐 음경해면체 이완작용에 미치는 홍삼사포닌 분획별 효과)

  • Choi Young Deuk;Park Jin Ah;Choi Hyung Ki;Nam Ki Yeul
    • Journal of Ginseng Research
    • /
    • v.23 no.1 s.53
    • /
    • pp.13-20
    • /
    • 1999
  • We previously reported that Korean red ginseng (KRG) has a relaxation effect on the smooth muscles of corpus cavernosum via nitric oxide (NO) pathway and calcium and potassium channels. However, it is suggested that the active ingredients of KRG might be different depending on the sources of preparation, and there might be differences in actions for different compositions. We first investigated the composition of KRG saponins according to the extractions of the various sources of KRG, then with these extractions the relaxation effects were evaluated in vitro and hemodynamical in vivo using New Zealand white rabbit and rat corpus cavernosum. The total compositions of ginsenoside $(G-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;G-Re,\;-Rf,\;-Rg_1)$ in fractionated KRG saponin designated as TS-1, TS-2, TS-3 were $41\%,\;40\%,\;and\;62\%,$ respectively, and the ratios of PD saponin and PT saponin (PD/PT) were 1,55, 1.72, 2.25, and 2.61, the values of which were statistically significant. In vitro studies using the rabbit corpus cavernosal muscle strips, the KRG saponin relaxed cavernosal strips in a dose-dependent manner, and same results were observed in in vivo studies, that KRG saponin increased the intracavernosal pressure in the rat. There was difference in the efficacy according to fractionation techniques. The differences in the total contents of ginsenosides did not affect relaxation, rather PT saponin content was statistically related to the degree of cavernosal relaxation, and this action presumed to be mediated by NO pathway and calcium and potassium channels. In conclusion, KRG exerts relaxation which is a key step in erection via combination of effects on NO system or calcium and potassium channels. The efficacy of this action is different to the sources of ginseng, which is affected by the different composition of ginsenosides $(G-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;G-Re,\;-Rf,\;-Rg_1).$ Thus the further studies on the active ingredients such as minor ginsenosides and non-saponin components of red ginseng with maximum potency should be sought.

  • PDF

Comparison of Physicochemical Properties of Extruded Ginseng Samples

  • Ji, Yan-Qing;Yang, Hye-Jin;Tie, Jin;Kim, Mi-Hwan;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.299-305
    • /
    • 2008
  • This study compared the physicochemical properties of root hair of white ginseng (WG), root hair of tissue cultured mountain ginseng (MG), root hair of red ginseng (RG) and extruded ginseng samples. The comparison of crude ash and total sugar resulted insignificant differences between extruded and raw samples. MG had a higher content of crude ash, crude protein, amino acids and polyphenolic compound than WG and RG; the total sugar and reducing sugar were highest in RG. Crude fat and acidic polysaccharide in RG and WG were similar to and higher than MG. Crude saponin of treated samples WG1 (moisture content 25%, barrel temperature $110^{\circ}C$) and WG3 (moisture content 35%, barrel temperature $110^{\circ}C$) were 9.80% and 9.73%, respectively, which were the highest among ginseng samples. In conclusion, the extrusion process can be applied to red ginseng manufacturing, and some characteristics of MG were higher than in RG and WG.

Effects of White Light and UV Irradiation on Growth and Saponin Production from Ginseng Hairy Root (광 및 UV 조사가 인삼 모상근의 생장 및 사포닌 생합성에 미치는 영향)

  • In, Jun-Gyo;Park, Dong-Sik;Lee, Bum-Soo;Kim, Se-Young;Rho, Yeong-Deok;Cho, Dong-Ha;Kim, Seong-Mu;Yang, Deok-Chun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.6
    • /
    • pp.360-366
    • /
    • 2006
  • To investigate the effect of culture conditions on growth and ginsenosides accumulation, we cultured the ginseng hairy root under three different media, white light or ultra-violet irradiation. The MS/B5 medium containning MS basal salt and B5 vitamin was good for the growth and ginsenoside accumulation. The light during the culture period of ginseng hairy root was irradiated. The growth was abundant in the ginseng hairy root cultured in dark. But the ginsenosides accumulation was higher than in the ginseng hairy root cultured in the light irradiation. When the ginseng hairy root was cultured in 20 L bioreactor, the ginsenosides accumulation was observed at 34% higher than the hairy root cultured in dark. UV irradiated the ginseng hairy root during the culture period. The long time irradiation of UV was caused decreasing the growth of ginseng hairy root, but the accumulation of ginsenosidess was increased as to the irradiated time.