Browse > Article
http://dx.doi.org/10.4014/jmb.1809.09056

Change of Ginsenoside Profiles in Processed Ginseng by Drying, Steaming, and Puffing  

Shin, Ji-Hye (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University)
Park, Young Joon (Department of Science in Korean Medicine, Graduate School, Kyung Hee University)
Kim, Wooki (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University)
Kim, Dae-Ok (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University)
Kim, Byung-Yong (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University)
Lee, Hyungjae (Department of Food Engineering, Dankook University)
Baik, Moo-Yeol (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.2, 2019 , pp. 222-229 More about this Journal
Abstract
Korean ginseng (Panax ginseng Meyer) was processed by drying, steaming, or puffing, and the effects of these processes on the ginsenoside profile were investigated. The main root of 4-year-old raw Korean ginseng was dried to produce white ginseng. Steaming, followed by drying, was employed to produce red or black ginseng. In addition, these three varieties of processed ginseng were puffed using a rotational puffing gun. Puffed ginseng showed significantly higher extraction yields of ginsenosides (49.87-58.60 g solid extract/100 g of sample) and crude saponin content (59.40-63.87 mg saponin/g of dried ginseng) than non-puffed ginseng, respectively. Moreover, puffing effectively transformed the major ginsenosides (Rb1, Rb2, Rc, Rd, Re, and Rg1) of ginseng into minor ones (F2, Rg3, Rk1, and Rg5), comparable to the steaming process effect on the levels of the transformed ginsenosides. However, steaming takes much longer (4 to 36 days) than puffing (less than 30 min) for ginsenoside transformation. Consequently, puffing may be an effective and economical technique for enhancing the extraction yield and levels of minor ginsenosides responsible for the major biological activities of ginseng.
Keywords
Ginsenoside profile; Panax ginseng Meyer; drying; steaming; puffing;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim J-H, Ahn S-C, Choi S-W, Hur N-Y, Kim B-Y, Baik M-Y. 2008. Changes in effective components of ginseng by puffing. J. Korean Soc. Appl. Biol. Chem. 51: 188-193.
2 Ha D-C, Ryu G-H. 2005. Chemical components of red, white, and extruded root ginseng. J. Korean Soc. Food Sci. Nutr. 34: 247-254.   DOI
3 Lee JH, Shen GN, Kim EK, Shin HJ, Myung CS, Oh HJ, et al. 2006. Preparation of black ginseng and its antitumor activity. Korean J. Orient. Physiol. Pathol. 20: 951-956.
4 Ando T, Tanaka O, Shibata S. 1971. Chemical studies on the oriental plant drugs (XXV). Comparative studies on the saponins and sapogenins of ginseng and related crude drugs. Shoyakugaku Zasshi. 25: 28-32.
5 Sun B-S, Gu L-J, Fang Z-M, Wang C-Y, Wang Z, Lee M-R, et al. 2009. Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC-ELSD. J. Pharm. Biomed. Anal. 50: 15-22.   DOI
6 Du XW, Wills RBH, Stuart DL. 2004. Changes in neutral and malonyl ginsenosides in American ginseng (Panax quinquefolium) during drying, storage and ethanolic extraction. Food Chem. 86: 155-159.   DOI
7 Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, et al. 2000. Steaming of ginseng at high temperature enhances biological activity. J. Nat. Prod. 63: 1702-1704.   DOI
8 Kang KS, Kim HY, Yamabe N, Yokozawa T. 2006. Stereospecificity in hydroxyl radical scavenging activities of four ginsenosides produced by heat processing. Bioorg. Med. Chem. Lett. 16: 5028-5031.   DOI
9 Mariotti M, Alamprese C, Pagani MA, Lucisano M. 2006. Effect of puffing on ultrastructure and physical characteristics of cereal grains and flours. J. Cereal Sci. 43: 47-56.   DOI
10 Yoon S-R, Lee G-D, Kim H-K, Kwon J-H. 2010. Monitoring of chemical changes in explosively puffed ginseng and the optimization of puffing conditions. J. Ginseng Res. 34: 59-67.   DOI
11 Park E-K, Choo M-K, Han MJ, Kim DH. 2004. Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int. Arch. Allergy Immunol. 133: 113-120.   DOI
12 Park JS, Park EM, Kim DH, Jung K, Jung JS, Lee EJ, et al. 2009. Anti-inflammatory mechanism of ginseng saponins in activated microglia. J. Neuroimmunol. 209: 40-49.   DOI
13 Cho WCS, Chung W-S, Lee SKW, Leung AWN, Cheng CHK, Yue KKM. 2006. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 550: 173-179.   DOI
14 Xie J-T, Mehendale SR, Li X, Quigg R, Wang X, Wang C-Z, et al. 2005. Anti-diabetic effect of ginsenoside Re in ob/ob mice. Biochim. Biophys. Acta 1740: 319-325.   DOI
15 Cheng L-Q, Na JR, Bang MH, Kim MK, Yang D-C. 2008. Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry 69: 218-224.   DOI
16 Shin JY, Lee JM, Shin HS, Park SY, Yang JE, Cho SK, et al. 2012. Anti-cancer effect of ginsenoside $F_2$ against glioblastoma multiforme in xenograft model in SD rats. J. Ginseng Res. 36: 86-92.   DOI
17 Qu C, Bai Y, Jin X, Wang Y, Zhang K, You J, et al. 2009. Study on ginsenosides in different parts and ages of Panax quinquefolius L. Food Chem. 115: 340-346.   DOI
18 Yu H, Liu Q, Zhang C, Lu M, Fu Y, Im W-T, et al. 2009. A new ginsenosidase from Aspergillus strain hydrolyzing 20-O-multi-glycoside of PPD ginsenoside. Process Biochem. 44: 772-775.   DOI
19 Shinkai K, Akedo H, Mukai M, Imamura F, Isoai A, Kobayashi M, et al. 1996. Inhibition of in vitro tumor cell invasion by ginsenoside Rg3. Jpn. J. Cancer Res. 87: 357-362.   DOI
20 Lee H-U, Bae E-A, Han MJ, Kim D-H. 2005. Hepatoprotective effect of 20 (S)-ginsenosides Rg3 and its metabolite 20 (S)-ginsenoside Rh2 on tert-butyl hydroperoxide-induced liver injury. Biol. Pharm. Bull. 28: 1992-1994.   DOI
21 Wei X, Chen J, Su F, Su X, Hu T, Hu S. 2012. Stereospecificity of ginsenoside Rg3 in promotion of the immune response to ovalbumin in mice. Int. Immunol. 24: 465-471.   DOI
22 T ian J, Zhang S, Li G, Liu Z, Xu B. 2009. 20(S)-ginsenoside Rg3, a neuroprotective agent, inhibits mitochondrial permeability transition pores in rat brain. Phytother. Res. 23: 486-491.   DOI
23 Lee Y, Jin Y, Lim W, Ji S, Choi S, Jang S, et al. 2003. A ginsenoside-Rh1, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. J. Steroid Biochem. Mol. Biol. 84: 463-468.   DOI
24 Chen J, Peng H, Ou-Yang X, He X. 2008. Research on the antitumor effect of ginsenoside Rg3 in B16 melanoma cells. Melanoma Res. 18: 322-329.   DOI
25 Quan L-H, Liang Z, Kim H-B, Kim S-H, Kim S-Y, Noh Y-D, et al. 2008. Conversion of ginsenoside Rd to compound K by crude enzymes extracted from Lactobacillus brevis LH8. J. Ginseng Res. 32: 226-231.   DOI
26 Sun BS, Gu LJ, Fang ZM, Wang CY, Wang Z, Lee MR, et al. 2009. Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC-ELSD. J. Pharm. Biomed. Anal. 50: 15-22.   DOI
27 Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T. 2008. Therapeutic potential of 20(S)-ginsenoside Rg3 against streptozotocin-induced diabetic renal damage in rats. Eur. J. Pharmacol. 591: 266-272.   DOI
28 Yayeh T, Jung K-H, Jeong H-Y, Park J-H, Song Y-B, Kwak Y-S, et al. 2012. Korean red ginseng saponin fraction downregulates proinflammatory mediators in LPS stimulated RAW264.7 cells and protects mice against endotoxic shock. J. Ginseng Res. 36: 263-269.   DOI
29 Kim JH, Pan JH, Cho HT , Kim YJ. 2016. Black ginseng extract counteracts streptozotocin-induced diabetes in mice. PLoS One 11: e0146843.   DOI
30 Payne FA, Taraba JL, Saputra D. 1989. A review of puffing processes for expansion of biological products. J. Food Eng. 10: 183-197.   DOI
31 An Y-E, Ahn S-C, Yang D-C, Park S-J, Kim B-Y, Baik M-Y. 2011. Chemical conversion of ginsenosides in puffed red ginseng. LWT-Food Sci. Technol. 44: 370-374.   DOI
32 Shim KS, Rhee SK. 2000. Effects of puffing treatments on the sensory qualities improving of ginseng extract J. Korean Prof. Eng. Assoc. 33: 106-115.