• Title/Summary/Keyword: well diffusion

Search Result 1,347, Processing Time 0.037 seconds

Effects of the ESD Protection Performance on GPNS(Gate to Primary N+ diffusion Space) Variation in the NSCR_PPS Device (NSCR_PPS 소자에서 게이트와 N+ 확산층 간격의 변화가 정전기 보호성능에 미치는 영향)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.6-11
    • /
    • 2015
  • The ESD(electrostatic discharge) protection performance of PPS(PMOS pass structure) embedded N-type silicon controlled rectifier(NSCR_PPS) device with different GPNS(Gate to Primary $N^+$ Diffusion Space) structure was discussed for high voltage I/O applications. A conventional NSCR_PPS standard device with FPW(Full P-Well) structure and non-CPS(Counter Pocket Source) implant shows typical SCR-like characteristics with low on-resistance(Ron), low snapback holding voltage(Vh) and low thermal breakdown voltage(Vtb), which may cause latch-up problem during normal operation. However, our proposed NSCR_PPS devices with modified PPW(Partial P-Well) structure and optimal CPS implant demonstrate the improved ESD protection performance as a function of GPNS variation. GPNS was a important parameter, which is satisfied design window of ESD protection device.

Quantum well intermixing of compressively strained InGaAs/InGaAsP multiple quantum well structure by using impurity-free vacancy diffusion technique (Impurity-free vacancy diffusion 방법을 이용하여 압축 응력을 가진 InGaAs/InGaAsP 다중양자우물 구조의 무질서화)

  • 김현수;박정우;오대곤;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.150-154
    • /
    • 2000
  • We investigated the quantum well intermixing (QWI) of a compressively strained InGaAs/InGaAsP multiple quantum well (MQW) by using impurity free vacancy diffusion technique. The samples with InGaAs/$SiO_2$ capping layer showed a higher degree of intermixing compared to that of InP/$SiO_2$ capping layer after rapid thermal annealing (RTA). Band-gap shift difference as large as 123 meV (195 nm) was observed between samples capped with InGaAs/$SiO_2$ and with InP/$SiO_2$ layer at RTA temperature of $700^{\circ}C$. Using the InGaAs/$SiO_2$ cap layer, the band-gap wavelength of MQW was changed by the intermixing from 1.55 $\mu\textrm{m}$ band to 1.3 $\mu\textrm{m}$ band with a wavelength shift of a 237 nm. The transform from MQW structure to homogenous alloy was observed above the RTA temperature of $700^{\circ}C$.

  • PDF

The Role of Fronts on the Vertical Transport of Atmospheric Pollutants I: 2D frontal model experiment (대기오염물질의 연직 수송에 미치는 전선의 역할 I: 2차원 전선모델을 이용한 수송 실험)

  • Nam, Jae-Cheol;Thorpe, Alan
    • Atmosphere
    • /
    • v.14 no.3
    • /
    • pp.29-40
    • /
    • 2004
  • It is well known that convections and fronts are the most effective weather systems for the vertical transport of pollutants. I used a two dimensional front model in order to investigate the mechanism of the vertical transport of atmospheric pollutants between planetary boundary layer(PBL) and free atmosphere by fronts. The main dynamic processes which contribute the vertical transport of pollutants are advection and diffusion. The transported amount of pollutant from the boundary layer to the free atmosphere increases dramatically during the developing stage of the front. 46% of pollutants are transported vertically within 12 hour and 54% are transported within 24 hour. In the meantime, compared to the total amount of pollutants transported by both advection and diffusion, about 25% (30%) less pollutants are transported when only advection (diffusion) process in included in the model. The most important mechanism for the vertical transport is vertical advection, while the vertical diffusion process plays an important role in the redistribution of pollutants in the PBL.

TRANSFORMATION OF DIMENSIONLESS HEAT DIFFUSION EQUATION FOR THE SOLUTION OF DYNAMIC DOMAIN IN PHASE CHANGE PROBLEMS

  • Ashraf, Muhammad;Avila, R.;Raza, S. S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.1
    • /
    • pp.31-40
    • /
    • 2009
  • In the present work transformation of dimensionless heat diffusion equation for the solution of moving boundary problems have been formulated. The formulation is based on 1-D, 2-D and 3-D, unsteady heat diffusion equations. These equations are rst turned int dimensionless form by using dimensionless quantities and their transformation was formulated in liquid and solid phases. The salient feature of this work is that during the transformation of dimensionless heat diffusion equation there arises a convective term $\tilde{v}$ which is responsible for the motion of interface in liquid as well as solid phase. In the transformed heat equation, a correction factor $\beta$ also arises naturally which gives the correct transformed flux at interface.

  • PDF

Two Pieces Extension of the Bass Diffusion Model (Bass 확산모형의 이분 확장)

  • Hong, Jung-Sik;Eom, Seok-Jun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.15-26
    • /
    • 2009
  • Bass diffusion model have played a central role in studying the diffusion of the new products since 1969, the year of publication of Bass model. Almost 750 publications based on the Bass diffusion model have explored extensions and applications. Extension models can be divided into two types. One is the model containing marketing-mix variables and the other is the model containing additional parameters. This paper presents another extension model of the latter type. Our model allows the time varying coefficients of innovation and imitation. Two pieces approximation of time varying coefficients is introduced and it's parameters are estimated based on NLS(Non-Linear Mean Square) method. Empirical studies are performed and the results show that our model is superior to the basic Bass model and the NUI(Non-Uniform Influence) model which is the well-known extension of the Bass model. The model developed in this paper is, also, transformed into the Bass model with the ready potential adopters in order to enhance the descriptive power.

An experimental study on Influence of Permeability on corrosion of reinforced Concrete (철근콘크리트의 부식에 영향을 미치는 물질 투과성능에 관한 실험적 연구)

  • 김용로;김영덕;조봉석;장종호;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.62-65
    • /
    • 2003
  • In this study, to confirm corrosion of reinforced concrete affected by carbonation, chloride ion diffusion, absorption ratio, air permeability, measured carbonation velocity coefficient, chloride ion diffusion coefficient, absorption coefficient, air permeability coefficient. Corrosion velocity under environment of complex deterioration. And than compared corrosion velocity with these coefficients. As the results of this study, the correlation coefficient between chloride ion diffusion coefficients and absorption coefficient was revealed that it is very high. As well, an increase in carbonation, chloride ion diffusion also increases corrosion velocity. It showed that corrosion velocity was affected by the carbonation, chloride ion diffusion, absorption ratio, air permeability. Generally, data on the development of these coefficient made with none, organic B, organic A, inorganic B, and inorganic A is shown. It showed that coating of surface prevent steel bar from deteriorating.

  • PDF

Effect of anisotropic diffusion coefficient on the evolution of the interface void in copper metallization for integrated circuit

  • Choy, J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.58-62
    • /
    • 2004
  • The shape evolution of the interface void of copper metallization for intergrated circuits under electromigration stress is modeled. A 2-dimensional finite-difference numerical method is employed for computing time evolution of the void shape driven by surface diffusion, and the electrostatic problem is solved by boundary element method. When the diffusion coefficient is isotropic, the numerical results agree well with the known case of wedge-shape void evolution. The numerical results for the anisotropic diffusion coefficient show that the initially circular void evolves to become a fatal slitlike shape when the electron wind force is large, while the shape becomes non-fatal and circular as the electron wind force decreases. The results indicate that the open circuit failure caused by slit-like void shape is far less probable to be observed for copper metallization under a normal electromigration stress condition.

An Image Enhancement Method Using Modified Diffusion Function in Anisotropic Diffusion Filter (이방성 확산 필터에서 수정된 확산 함수를 이용한 영상 개선 방법)

  • Song, Young-Chul;Choi, Doo-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.50-58
    • /
    • 2004
  • An image enhancement method using modified anisotropic diffusion filter is proposed in this paper. It employs sensor noise estimation and scale space methods based on the minimum reliable scale. Then the anisotropic diffusion filter is modified by the calculated critical value function and local gradient. Through simulation, it is verified that the proposed algorithm has the capability of little or no noise amplification in homogenous region as well as superior edge enhancement.

Modelling the Densification Behaviour of Powders Considering Diffusion and Power-Law Creep Mechanisms during Hot Isostatic Pressing (열간정수압압축 시 확산기구 및 Power-law크립기구를 고려한 분말 치밀화거동의 모델링)

  • 김형섭
    • Journal of Powder Materials
    • /
    • v.7 no.3
    • /
    • pp.137-142
    • /
    • 2000
  • In order to analyze the densification behaviour of stainless steel powder compacts during hot isostatic pressing (HIP) at elevated temperatures, a power-law creep constitutive model based on the plastic deformation theory for porous materials was applied to the densification. Various densification mechanisms including interparticle boundary diffusion, grain boundary diffusion and lattice diffusion mechanisms were incorporated in the constitutive model, as well. The power-law creep model in conjunction with various diffusion models was applied to the HIP process of 316L stainless steel powder compacts under 50 and 100 MPa at $1125^{\circ}C$. The results of the calculations were verified using literature data. It could be found that the contribution of the diffusional mechanisms is not significant under the current process conditions.

  • PDF

Theoretical Studies of Surface Diffusion : Multidimensional TST and Effect of Surface Vibrations

  • 곽기정;신석민;이상엽;신국조
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.192-198
    • /
    • 1996
  • We present a theoretical formulation of diffusion process on solid surface based on multidimensional transition state theory (TST). Surface diffusion of single adatom results from hopping processes on corrugated potential surface and is affected by surface vibrations of surface atoms. The rate of rare events such as hopping between lattice sites can be calculated by transition state theory. In order to include the interactions of the adatom with surface vibrations, it is assumed that the coordinates of adatom are coupled to the bath of harmonic oscillators whose frequencies are those of surface phonon modes. When nearest neighbor surface atoms are considered, we can construct Hamiltonians which contain terms for interactions of adatom with surface vibrations for the well minimum and the saddle point configurations, respectively. The escape rate constants, thus the surface diffusion parameters, are obtained by normal mode analysis of the force constant matrix based on the Hamiltonian. The analysis is applied to the diffusion coefficients of W, Ir, Pt and Ta atoms on the bcc(110) plane of W in the zero-coverage limit. The results of the calculations are encouraging considering the limitations of the model considered in the study.