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ABSTRACT. In the present work transformation of dimensionless heat diffusion equation for
the solution of moving boundary problems have been formulated. The formulation is based
on 1-D, 2-D and 3-D, unsteady heat diffusion equations. These equations are first turned into
dimensionless form by using dimensionless quantities and their transformation was formulated
in liquid and solid phases. The salient feature of this work is that during the transformation
of dimensionless heat diffusion equation there arises a convective term ṽ which is responsible
for the motion of interface in liquid as well as solid phase. In the transformed heat equation, a
correction factor β also arises naturally which gives the correct transformed flux at interface.

1. INTRODUCTION

Transient heat transfer problems, involving melting or solidification, generally referred to
as phase-change or moving body problems are important in many engineering applications.
The solution of such problem is difficult because the interface between the two phases is mov-
ing as latent heat is absorbed or released at the interface [1]. For the numerical solution of
such problems dimensionless form of partial differential equation is required. The problems
involving moving boundaries are very complicated at the interface, so transformation of dimen-
sionless partial differential equation is a helpful technique for their solution in liquid and solid
domain [4]. During the process of melting or solidification, interface moves in between liquid
and solid part of the domain. A transformation technique must therefore be used to insure
that the final projection from the old to new domain is exact. The basis of above mentioned
transformation are the classical heat equations T1(x, y, z, t) and T2(x, y, z, t) [1].
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FIGURE 1. Domain definition for a two dimensional moving boundary problem.

ρCP

∂T1

∂t
= K1∇

2T1 in D1 (1)

ρCP

∂T2

∂t
= K2∇

2T2 in D2 (2)

ρLVn = K2∇T2 · n̂2 − K1∇T1 · n̂1 on
∑

(t). (3)

Here ρ is the density, CP is the specific heat, and K is the thermal conductivity, L is the
latent heat of fusion and vn is the interface velocity in the direction n̂1 normal to the surface
∑

(t) . The subscripts 1 and 2 refer to the liquid and solid phases as from Figure 1, respectively.
The initial conditions on the temperature and the interface position are given by

T1(x, y, z, t = 0) (4)

T2(x, y, z, t = 0) (5)

∑

(t = 0) =
o
∑

. (6)

And the boundary conditions are assumed to be of the form:

a1∇T1 · n1 = c1 on Γ1 (7)

a2∇T2 · n2 = c2 on Γ2 (8)

T1 = T2 = Tm,s. (9)

Here ai, bi, and ci are constants and Tm,s is the melting or solidification temperature of the
material. Γ1 and Γ2 are the liquid and solid boundaries of the domain.
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2. DIMENSIONLESS FORM OF THE HEAT EQUATIONS

The dimensionless form of the 1-D, 2-D, and 3-D heat diffusion equations by using dimen-
sionless quantities is given as under:

2.1. Dimensional form of 1-D Heat Equation. The dimensionless form non dimensional
heat diffusion equation is as follows:

∂Θ1

∂τ
=

∂2Θ1

∂ξ2
, 0 < ξ < η (10)

∂Θ2

∂τ
=

∂2Θ2

∂ξ2
, η < ξ < 1 (11)

γ
dη

dτ
= −

∂Θ1

∂ξ
+ K

∂Θ2

∂ξ
ξ = η. (12)

2.2. Dimensional form of 2-D Heat Equation. The dimensionless form two dimensional
heat diffusion equation is as follows:

∂Θ1

∂τ
=

∂2Θ1

∂ξ2
1

+
∂2Θ1

∂ξ2
2

, 0 < ξ < η, 0 < ξ2 < η (13)

∂Θ2

∂τ
= K

(

∂2Θ2

∂ξ2
1

+
∂2Θ2

∂ξ2
2

)

, 0 < ξ < η, 0 < ξ2 < η (14)

γ
dη

dτ
= −

(

∂Θ1

∂ξ1

+
∂Θ1

∂ξ2

)

+ K

(

∂Θ2

∂ξ1

+
∂Θ2

∂ξ2

)

, ξ1 = η, ξ2 = η. (15)

2.3. Dimensional form of 3-D Heat Equation. The dimensionless form three dimensional
heat diffusion equation is as follows:

∂Θ1

∂τ
=

∂2Θ1

∂ξ2
1

+
∂2Θ1

∂ξ2
2

+
∂2Θ1

∂ξ2
3

, 0 < ξ1 < η, 0 < ξ2 < η, 0 < ξ3 < η (16)

∂Θ2

∂τ
= K

(

∂2Θ2

∂ξ2
1

+
∂2Θ2

∂ξ2
2

+
∂2Θ2

∂ξ2
3

)

, 0 < ξ1 < η, 0 < ξ2 < η, 0 < ξ3 < η (17)

γ
dη

dτ
= −

(

∂Θ1

∂ξ1

+
∂Θ1

∂ξ2

+
∂Θ1

∂ξ3

)

+ K

(

∂Θ2

∂ξ1

+
∂Θ2

∂ξ2

+
∂Θ2

∂ξ3

)

, ξ1 = η, ξ2 = η, ξ3 = η.

(18)
Dimensionless quantities are:

ξ =
x

l
, τ =

α1t

l2
, Θ1 =

(

T1 − Tb

4T

)

Θm,s =

(

Tm,s − Tb

4T

)

, γ =
L

CP4T

η =
s

l
, α =

k

ρCP

, 4T = Ta − Tb, ξ1 =
x1

l1
, ξ2 =

x2

l2
, ξ3 =

x3

l3
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FIGURE 2. The dynamic regions d1 < ξ < η(τ) and η(τ) < ξ < d2 are
transformed to fixed domains through an interface-local transformation tech-
nique.

Θ2 =

(

T2 − Tb

4T

)

.

3. TRANSFORMATION OF DIMENSIONLESS HEAT DIFFUSION EQUATIONS

The transformation of dimensionless heat diffusion equation is given as under:

3.1. Transformation of 1-D dimensionless Heat Diffusion Equation. The dimensionless
form of the heat diffusion equation for the liquid part of the domain is as under:

∂Θ1

∂τ
=

∂2Θ1

∂ξ2
, 0 < ξ < η. (19)

The dimensionless heat equations are defined on dynamic domains described by the motion
of the interface boundary

∑

(t) . In time dependent moving mesh technique, at every time step
the heat equation in each phase (4-8) are first solved on a fixed domain corresponding to the old
position of the phase interface. The new interface position is then calculated on the basis of (4c-
8c), the geometry and domain of the problem are updated. A transformation technique must
therefore be used to insure that the final projection from the old to new domain is exact [4]. We
now present the particular interface local transformation technique that we have employed; as
the mapping procedure is identical in both phases. We consider only the liquid phase and drop
the subscript 1, [2]

∂Θ

∂τ
=

∂2Θ1

∂ξ2
, 0 < ξ < η(τ). (20)

Let ξ be the coordinate on the time dependent domain and ξ̃ be the coordinate on the asso-
ciated fixed (old) domain. Our transformation is then given by:

ξ̃ = ξ, 0 < ξ < d1 (21)
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FIGURE 3. (3a) The dynamic regions d1 < ξ1, ξ2, ξ3 < η(τ) and η(τ) <

ξ1, ξ2, ξ3 < d2 are transformed to fixed domains through an interface-local
transformation technique in 3D. (3b) Interpretation of the moving interface, η

is the position of the interface.

ξ̃ =

(

η(τo) − d1

η(τ) − d1

)

(ξ − d1) + d1, d1 < ξ < η(τ) (22)

which maps ξ ∈ [0, η(τ)] to ξ̃ ∈ [0, η(τo)], as shown in Figure 2. The transformation involves
only that part of the dynamic domain d1 < ξ < η(τ), with d1 chosen near the interface. Where
η(τo) and η(τ) corresponds to the interface position at the old time step and at new time step
respectively [2,7,8].

If we see that the left hand side of the equation (20) can be written as:

∂Θ

∂τ
=

∂Θ̃

∂ξ̃

dξ̃

dτ
+

∂Θ̃

∂τ
(23)

where ∂Θ̃

∂τ
is the temporal term in dynamic domain, and by using (22) we have

dξ̃

dτ
= −

(η(τo) − d1)

(η(τ) − d1)
2

dτ(η)

dτ
(ξ − d1). (24)

Thus equation (23) can be written as:

∂Θ

∂τ
= −

(η(τo) − d1)

(η(τ) − d1)
2

dτ(η)

dτ
(ξ − d1)

∂Θ̃

∂ξ̃
+

∂Θ̃

∂τ
. (25)
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We can also write
∂2Θ

∂ξ2
=

(

η(τo) − d1

η(τ) − d1

)2
∂2Θ̃

∂ξ̃2
. (26)

By substituting (25) and (26) in (20), we have the equation of the form

∂Θ̃

∂τ
−

(η(τo) − d1)

(η(τ) − d1)
2

dτ(η)

dτ
(ξ − d1)

∂Θ̃

∂ξ̃
=

(

η(τo) − d1

η(τ) − d1

)2
∂2Θ̃

∂ξ̃2
. (27)

The equation (27) can be arranged as follows:

1

β

∂Θ̃

∂τ
+ ṽ

∂Θ̃

∂ξ̃
= β

∂2Θ̃

∂ξ̃2
(28)

ṽ = −
1

β

dτ(η)

dτ

β =
ξ − d1

τ(η) − d1

.

The motivation behind the transformation is identity Θ̃(ξ̃, τ) = Θ(ξ, τ) that is, any solution
of convection-diffusion 0 < ξ̃ < η(τo) is identical to the solution of the heat diffusion on the
new domain 0 < ξ̃ < η(τ). This implies that the solution on the the old fixed domain can
be projected directly on the new domain .Where the additional convective term ṽ reflects that
the domain is fixed near the phase interface. The correction factor β in the transformed heat
equation are distributed so that the equivalent variational statement naturally gives the correct
transformed flux at the interface.

3.2. Transformation of 2-D dimensionless Heat Diffusion Equation. The 2-D, dimension-
less form of the heat diffusion equation for the liquid part of the domain is as under:

∂Θ

∂τ
=

∂2Θ1

∂ξ2
1

+
∂2Θ1

∂ξ2
2

, 0 < ξ1 < η(τ), 0 < ξ2 < η(τ). (29)

Let ξ1,and ξ2 be the coordinate on the time dependent domain ξ̃1 and ξ̃2 be the coordinates
on the associated fixed old domain, the transformation is thus:

ξ̃1 = ξ1, 0 < ξ1 < d1 (30)

ξ̃2 = ξ2, 0 < ξ2 < d1 (31)
and

ξ̃1 =

(

η(τo) − d1

η(τ) − d1

)

(ξ1 − d1) + d1, d1 < ξ1 < η(τ) (32)

ξ̃2 =

(

η(τo) − d1

η(τ) − d1

)

(ξ2 − d1) + d1, d1 < ξ2 < η(τ) (33)

and
ξ1 ∈ [0, η(τ)] , ξ2 ∈ [0, η(τ)]
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to
ξ̃1 ∈ [0, η(τo)] , ξ̃2 ∈ [0, η(τo)] .

The left hand side of the equation (29) can be written as

∂Θ

∂τ
=

∂Θ̃

∂ξ̃1

dξ̃1

dτ
+

∂Θ̃

∂ξ̃2

dξ̃2

dτ
+

∂Θ̃

∂τ
. (34)

By using (32) and (33) the equation (34) can be written as

∂Θ

∂τ
= −

(η(τo) − d1)

(η(τ) − d1)
2

dτ(η)

dτ
(ξ1 − d1)

∂Θ̃

∂ξ̃1

−
(η(τo) − d1)

(η(τ) − d1)
2

dτ(η)

dτ
(ξ2 − d1)

∂Θ̃

∂ξ̃2

+
∂Θ̃

∂τ
. (35)

And the terms on the right hand side of the equation (29) can be written as

∂2Θ

∂ξ2
1

=

(

η(τo) − d1

η(τ) − d1

)2
∂2Θ̃

∂ξ̃2
1

(36)

∂2Θ

∂ξ2
2

=

(

η(τo) − d1

η(τ) − d1

)2
∂2Θ̃

∂ξ̃2
2

. (37)

By using equation (35), (36), and (37) the equation (29) is of the form

∂Θ̃

∂τ
−

(η(τo) − d1)

(η(τ) − d1)
2

dτ(η)

dτ
(ξ1 − d1)

∂Θ̃

∂ξ̃1

−
(η(τo) − d1)

(η(τ) − d1)
2

dτ(η)

dτ
(ξ2 − d1)

∂Θ̃

∂ξ̃2

=

(

η(τo) − d1

η(τ) − d1

)2
∂2Θ̃

∂ξ̃2
1

+
∂2Θ

∂ξ2
2

(

η(τo) − d1

η(τ) − d1

)2
∂2Θ̃

∂ξ̃2
2

. (38)

The above equation (38) can be arranged as follows

1

β

∂Θ̃

∂τ
+ ṽ1

∂Θ̃

∂ξ̃ 1

+ ṽ2

∂Θ̃

∂ξ̃ 2

= β

(

∂2Θ̃

∂ξ̃2
1

+
∂2Θ̃

∂ξ̃2
2

)

. (39)

The important terms in equation (39), have the values.

ṽ1 = −
1

β

dτ(η)

dτ

′

ṽ2 = −
1

β

dτ(η)

dτ

β =
ξ1 − d1

τ(η) − d1

, β =
ξ2 − d1

τ(η) − d1

where ṽ1 and ṽ2 are convective terms in two dimensions and are responsible for the movement
of interface in liquid phase,and is the same for the solid phase, and the correction factor β in the
transformed heat equation are distributed so that the equivalent variational statement naturally
gives the correct transformed flux at the interface in two dimensions problems.
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3.3. Transformation of 3-D dimensionless Heat Diffusion Equation. The 3-D, dimension-
less form of the heat diffusion equation for the liquid part of the domain is as under:

∂Θ

∂τ
=

∂2Θ1

∂ξ2
1

+
∂2Θ1

∂ξ2
2

+
∂2Θ1

∂ξ2
3

, 0 < ξ1 < η(τ), 0 < ξ2 < η(τ). (40)

Let ξ1, ξ2, and ξ3 be the coordinate on the time dependent domain ξ̃1, ξ̃2, and ξ̃3 be the
coordinates on the associated fixed old domain as from Figure 3, the transformation is thus:

ξ̃1 = ξ1, 0 < ξ1 < d1 (41)

ξ̃2 = ξ2, 0 < ξ2 < d1 (42)
ξ̃3 = ξ3, 0 < ξ3 < d1 (43)

ξ̃1 =

(

η(τo) − d1

η(τ) − d1

)

(ξ1 − d1) + d1, d1 < ξ1 < η(τ) (44)

ξ̃2 =

(

η(τo) − d1

η(τ) − d1

)

(ξ2 − d1) + d1, d1 < ξ2 < η(τ) (45)

ξ̃3 =

(

η(τo) − d1

η(τ) − d1

)

(ξ3 − d1) + d1, d1 < ξ3 < η(τ) (46)

where
ξ1 ∈ [0, η(τ)] , ξ2 ∈ [0, η(τ)] , ξ3 ∈ [0, η(τ)]

to
ξ̃1 ∈ [0, η(τo)] , ξ̃2 ∈ [0, η(τo)] , ξ̃3 ∈ [0, η(τo)] .

The left hand side of the equation (40) can be written as

∂Θ

∂τ
=

∂Θ̃

∂ξ̃1

dξ̃1

dτ
+

∂Θ̃

∂ξ̃2

dξ̃2

dτ
+

∂Θ̃

∂ξ̃3

dξ̃3

dτ
+

∂Θ̃

∂τ
. (47)

By using equations (41-46) the above equation (47) can be written as

∂Θ

∂τ
= −

(η(τo) − d1)

(η(τ) − d1)
2

dτ(η)

dτ
(ξ1 − d1)

∂Θ̃

∂ξ̃1

−
(η(τo) − d1)

(η(τ) − d1)
2

dτ(η)

dτ
(ξ2 − d1)

∂Θ̃

∂ξ̃2

−
(η(τo) − d1)

(η(τ) − d1)
2

dτ(η)

dτ
(ξ3 − d1)

∂Θ̃

∂ξ̃3

+
∂Θ̃

∂τ
. (48)

The terms right hand side of the equation (40), can be written as

∂2Θ

∂ξ2
1

=

(

η(τo) − d1

η(τ) − d1

)2
∂2Θ̃

∂ξ̃2
1

(49)

∂2Θ

∂ξ2
2

=

(

η(τo) − d1

η(τ) − d1

)2
∂2Θ̃

∂ξ̃2
2

(50)

∂2Θ

∂ξ2
3

=

(

η(τo) − d1

η(τ) − d1

)2
∂2Θ̃

∂ξ̃2
3

. (51)
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By using (48-51), we have the equation of the form

∂Θ̃

∂τ
−

(η(τo) − d1)

(η(τ) − d1)
2

dτ(η)

dτ
(ξ1 − d1)

∂Θ̃

∂ξ̃1

−
(η(τo) − d1)

(η(τ) − d1)
2

dτ(η)

dτ
(ξ2 − d1)

∂Θ̃

∂ξ̃2

−
(η(τo) − d1)

(η(τ) − d1)
2

dτ(η)

dτ
(ξ3 − d1)

∂Θ̃

∂ξ̃3

=

(

η(τo) − d1

η(τ) − d1

)2

∂2Θ̃

∂ξ̃2
1

+
∂2Θ

∂ξ2
2

(

η(τo) − d1

η(τ) − d1

)2
∂2Θ̃

∂ξ̃2
2

+
∂2Θ

∂ξ2
3

(

η(τo) − d1

η(τ) − d1

)2
∂2Θ̃

∂ξ̃2
3

. (52)

The above equation (52) can be arranged as follows

1

β

∂Θ̃

∂τ
+ ṽ1

∂Θ̃

∂ξ̃ 1

+ ṽ2

∂Θ̃

∂ξ̃ 2

+ ṽ3

∂Θ̃

∂ξ̃ 3

= β

(

∂2Θ̃

∂ξ̃2
1

+
∂2Θ̃

∂ξ̃2
2

+
∂2Θ̃

∂ξ̃2
3

)

. (53)

The important terms in equation (53), have the values

ṽ1 = −
1

β

dτ(η)

dτ

′

, ṽ2 = −
1

β

dτ(η)

dτ
, ṽ3 = −

1

β

dτ(η)

dτ

β =
ξ1 − d1

τ(η) − d1

, β =
ξ2 − d1

τ(η) − d1

, β =
ξ3 − d1

τ(η) − d1

.

Conclusion:
The most important feature of this formulation is that convective term arises during transforma-
tion which is responsible for the motion of interface in the phase change problem with liquid
as well as solid phase. The terms ṽ1, ṽ2, and ṽ3, play an significant role in heat transfer and
hence affect the progress of solidification as well melting front. This approach provides the
fundamental governing equations (28), (39), and (53) in the form of transformation of dimen-
sionless heat diffusion equation and can be used to analyze the complex geometries by using
different numerical techniques. The correction factor β which is also arises naturally which
gives the correct transformed flux at the interface. Thus this formulation is a golden standard
for numerical analyst to analyze the moving boundary problems.
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Nomonclature:
T1, T2 = Temperature in the liquid and solid phase
Tm,s = Melting or solidification temperature

ρ = Fluid density
Γ1, Γ2 = Liquid and solid boundaries

∇T = Temperature difference
CP = Specific heat
vn = Interface velocity
γ = Stefan number
L = Latent heat, amount of heat release or absorbed by interface

Θ1, Θ2 = Dimensionless liquid and solid domain temperature
k = Thermal Conductivity
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