• Title/Summary/Keyword: weighted residual

Search Result 120, Processing Time 0.024 seconds

Finite Element Analysis and Evaluation of a Three-dimensional Plate Theory (삼차원 판이론의 유한요소해석)

  • 조한욱
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.147-160
    • /
    • 1995
  • Based on the weighted residual concept[4], a three-dimensional plate theory is derived using a Fourier series expansion of a dependent variable and a weighted residual approximation of the basic elasticity equations. The weighted residual equilibrium equations of the plate are expressed in terms of weighted displaced quantities, and the results are then interpreted by means of a potential energy functional. The potential energy expression is used to develop a finite element implementation. For illustrative purposes, the application of the theory to a strip plate is considered and two numerical examples of a cantilever and a simply-supported strip plate are studied.

  • PDF

A Comparative Study on Single Time Schemes Based on the FEM for the Analysis of Structural Transient Problems (구조물의 시간에 따른 거동 해석을 위한 유한요소법에 기초한 단일 스텝 시간 범주들의 비교연구)

  • Kim, Woo-Ram;Choi, Youn-Dae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.957-964
    • /
    • 2011
  • New time schemes based on the FEM were developed and their performances were tested with 2D wave equation. The least-squares and weighted residual methods are used to construct new time schemes based on traditional residual minimization method. To overcome some drawbacks that time schemes based on the least-squares and weighted residual methods have, ad-hoc method is considered to minimize residuals multiplied by others residuals as a new approach. And variational method is used to get necessary conditions of ad-hoc minimization. A-stability was chosen to check the stability of newly developed time schemes. Specific values of new time schemes are presented along with their numerical solutions which were compared with analytic solution.

Measurement of Residual Stress Distribution in the Depth Direction of Annealed Materials of Lapped Bearing Steel Using Weighted Averaging Analysis Method (가중평균 해석법을 이용한 래핑된 베어링강 어닐링재료의 깊이방향에 대한 잔류응력분포 측정)

  • Chang-Suk Han;Chan-Woo Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.205-213
    • /
    • 2023
  • This paper reports the results of an experimental examination using X-rays to test annealing materials for lapped bearing steel (STB2), to confirm the validity of the weighted averaging analysis method. The distribution behavior for the α𝜓-sin2𝜓 diagram and the presence or absence of differences in the peak method, half-value breadth method, and centroid method were investigated. When lapping the annealed bearing steel (STB2) material, a residual stress state with a non-directional steep gradient appeared in the surface layer, and it was found that the weighted averaging analysis method was effective. If there is a steep stress gradient, the sin2𝜓 diagram is curved and the diffraction intensity distribution curve becomes asymmetric, resulting in a difference between the peak method, half-value breadth method, and centroid method. This phenomenon was evident when the stress gradient was more than 2~3 kg/mm2/㎛. In this case, if the position of the diffraction line is determined using the centroid method and the weighted averaging analysis method is applied, the stress value on the surface and the stress gradient under the surface can be obtained more accurately. When the stress gradient becomes a problem, since the curvature of the sin2𝜓 diagram appears clearly in the region of sin2𝜓 > 0.5, it is necessary to increase the inclination angle 𝜓 as much as possible. In the case of a lapping layer, a more accurate value can be obtained by considering 𝜎3 in the weighted averaging analysis method. In an isotropic biaxial residual stress state, the presence or absence of 𝜎3 can be determined as the presence or absence of strain for sin2𝜓≈0.4.

A Stud on the Estimation of Leakage and the probing Leakage in the River Bank (하천제방의 누수탐사 및 누수량 평가에 관한 연구)

  • 김경수;조기태
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.213-217
    • /
    • 1999
  • The river bank is one of the most important structure of fluvial hydraulic structure. Because the breaking of river bank is the cause of calamity, the durability and stability of river bank an very important factors. The breaking of river bank is the cause of the overflow of flood and the leakage of river bank. In this study, we investigated the leakage of river bank using the resistivity probing and estimated the volume of leakage using the weighted residual method The study basin of this study is the upstream of Sumji river basin and the factor of river bank is length 300 m and berm 2.0 m and width 4.5 m and height 4 m. We evaluated the leakage of river basin using using the resistivity probing and estimated the leakage volume using the weighted residual method. The result of this study, the leakage of river bank generated at the point of 39~45 m 80~90 m. 218~222 m. 214~250 m and the type of leakage is the rectangle and the polygon. And the leakage volume of this points evaluated 2.7$\times$$10^{-3}$ $\textrm{m}^3$/sec.

  • PDF

Assessing the Impacts of Errors in Coarse Scale Data on the Performance of Spatial Downscaling: An Experiment with Synthetic Satellite Precipitation Products

  • Kim, Yeseul;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.445-454
    • /
    • 2017
  • The performance of spatial downscaling models depends on the quality of input coarse scale products. Thus, the impact of intrinsic errors contained in coarse scale satellite products on predictive performance should be properly assessed in parallel with the development of advanced downscaling models. Such an assessment is the main objective of this paper. Based on a synthetic satellite precipitation product at a coarse scale generated from rain gauge data, two synthetic precipitation products with different amounts of error were generated and used as inputs for spatial downscaling. Geographically weighted regression, which typically has very high explanatory power, was selected as the trend component estimation model, and area-to-point kriging was applied for residual correction in the spatial downscaling experiment. When errors in the coarse scale product were greater, the trend component estimates were much more susceptible to errors. But residual correction could reduce the impact of the erroneous trend component estimates, which improved the predictive performance. However, residual correction could not improve predictive performance significantly when substantial errors were contained in the input coarse scale data. Therefore, the development of advanced spatial downscaling models should be focused on correction of intrinsic errors in the coarse scale satellite product if a priori error information could be available, rather than on the application of advanced regression models with high explanatory power.

Adaptive Residual DPCM using Weighted Linear Combination of Adjacent Residues in Screen Content Video Coding (스크린 콘텐츠 비디오의 압축을 위한 인접 화소의 가중 합을 이용한 적응적 Residual DPCM 기법)

  • Kang, Je-Won
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.782-785
    • /
    • 2015
  • In this paper, we propose a novel residual differential pulse-code modulation (RDPCM) coding technique to improve coding efficiency of screen content videos. The proposed method uses a weighted combination of adjacent residues to provide an accurate estimate in RDPCM. The weights are trained in previously coded samples by using an L1 optimization problem with the least absolute shrinkage and selection operation (LASSO). The proposed method achieves BD-rate saving about 3.1% in all-intra coding.

A Triple Residual Multiscale Fully Convolutional Network Model for Multimodal Infant Brain MRI Segmentation

  • Chen, Yunjie;Qin, Yuhang;Jin, Zilong;Fan, Zhiyong;Cai, Mao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.962-975
    • /
    • 2020
  • The accurate segmentation of infant brain MR image into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is very important for early studying of brain growing patterns and morphological changes in neurodevelopmental disorders. Because of inherent myelination and maturation process, the WM and GM of babies (between 6 and 9 months of age) exhibit similar intensity levels in both T1-weighted (T1w) and T2-weighted (T2w) MR images in the isointense phase, which makes brain tissue segmentation very difficult. We propose a deep network architecture based on U-Net, called Triple Residual Multiscale Fully Convolutional Network (TRMFCN), whose structure exists three gates of input and inserts two blocks: residual multiscale block and concatenate block. We solved some difficulties and completed the segmentation task with the model. Our model outperforms the U-Net and some cutting-edge deep networks based on U-Net in evaluation of WM, GM and CSF. The data set we used for training and testing comes from iSeg-2017 challenge (http://iseg2017.web.unc.edu).

Speaker Verification Performance Improvement Using Weighted Residual Cepstrum (가중된 예측 오차 파라미터를 사용한 화자 확인 성능 개선)

  • 위진우;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.48-53
    • /
    • 2001
  • In speaker verification based on LPC analysis the prediction residues are ignored and LPCC(LPC cepstrum) are only used to compose feature vectors. In this study, LPCC and RCEP (residual cepstrum) extracted from residues are used as feature parameters in the various environmental speaker verification. We propose the weighting function which can enlarge inter-speaker variation by weighting pitch, speaker inherent vector, included in residual cepstrum. Simulation results show that the average speaker verification rate is improved in the rate of 6% with RCEP and LPCC at the same time and is improved in the rate of 2.45% with the proposed weighted RCEP and LPCC at the same time compared with no weighting.

  • PDF

Bivariate EWMA Control Charts for Autocorrelated Processes

  • Cho, Gyo-Young;Ahn, Young-Sun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.1
    • /
    • pp.105-112
    • /
    • 2002
  • In this paper we establish bivariate exponentially weighted moving average (EWMA) control charts for autocorrelated processes using residual vectors. We first derive the residual vectors, their expectation, variance-covariance matrix, then evaluate the control chart based on the average run length (ARL).

  • PDF

Diagnosis of Residual Tumors after Unplanned Excision of Soft-Tissue Sarcomas: Conventional MRI Features and Added Value of Diffusion-Weighted Imaging

  • Jin, Kiok;Lee, Min Hee;Yoon, Min A;Kim, Hwa Jung;Kim, Wanlim;Chee, Choong Geun;Chung, Hye Won;Lee, Sang Hoon;Shin, Myung Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.1
    • /
    • pp.20-31
    • /
    • 2022
  • Purpose: To assess conventional MRI features associated with residual soft-tissue sarcomas following unplanned excision (UPE), and to compare the diagnostic performance of conventional MRI only with that of MRI including diffusion-weighted imaging (DWI) for residual tumors after UPE. Materials and Methods: We included 103 consecutive patients who had received UPE of a soft-tissue sarcoma with wide excision of the tumor bed between December 2013 and December 2019 and who also underwent conventional MRI and DWI in this retrospective study. The presence of focal enhancement, soft-tissue edema, fascial enhancement, fluid collections, and hematoma on MRI including DWI was reviewed by two musculoskeletal radiologists. We used classification and regression tree (CART) analysis to identify the most significant MRI features. We compared the diagnostic performances of conventional MRI and added DWI using the McNemar test. Results: Residual tumors were present in 69 (66.9%) of 103 patients, whereas no tumors were found in 34 (33.1%) patients. CART showed focal enhancement to be the most significant predictor of residual tumors and correctly predicted residual tumors in 81.6% (84/103) and 78.6% (81/103) of patients for Reader 1 and Reader 2, respectively. Compared with conventional MRI only, the addition of DWI for Reader 1 improved specificity (32.8% vs. 56%, 33.3% vs. 63.0%, P < 0.05), decreased sensitivity (96.8% vs. 84.1%, 98.7% vs. 76.7%, P < 0.05), without a difference in diagnostic accuracy (76.7% vs. 74.8%, 72.9% vs. 71.4%) in total and in subgroups. For Reader 2, diagnostic performance was not significantly different between the sets of MRI (P > 0.05). Conclusion: After UPE of a soft-tissue sarcoma, the presence or absence of a focal enhancement was the most significant MRI finding predicting residual tumors. MRI provided good diagnostic accuracy for detecting residual tumors, and the addition of DWI to conventional MRI may increase specificity.